{"title":"Autism spectrum disorder-like behaviors in developing zebrafish exposed to particulate matter","authors":"Shayla Victoria, Courtney Roper","doi":"10.1016/j.ntt.2025.107548","DOIUrl":null,"url":null,"abstract":"<div><div>Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders that can impact communication and social behaviors. Evidence suggests that the causes of ASD are likely a combination of genetic and environmental factors, such as air pollution. Particulate matter (PM) is the solid and liquid portion of air pollution that can vary in size and has been associated with many health impacts, including cardiorespiratory impacts, and has more recently been found to be associated with the prevalence of ASD. However, little is known about the phenotypic presentations of this association between PM and ASD, therefore, the zebrafish (<em>Danio rerio</em>) model was employed to study behaviors often associated with ASD as a result of PM exposure. Zebrafish larvae were exposed for a total of 5 days to PM standard reference material (SRM1649b) and a commonly used home remedy, melatonin, beginning at 6 h post-fertilization and various behavioral assays were performed on subsequent days for a total of 13 days. Observed and quantified behaviors were compared to a positive control, valproic acid (VPA). Generally, PM exposure did not elicit behavior resembling that of VPA exposure and the interactions between PM and VPA did not induce additive or synergistic behavioral patterns, as expected. Melatonin supplementation did not ameliorate most of the observed behavioral impacts of PM or VPA exposure. These results have prompted additional questions about the phenotypic presentations of ASD as a result of PM exposure and contribute to growing knowledge about disease-environment interactions.</div></div>","PeriodicalId":19144,"journal":{"name":"Neurotoxicology and teratology","volume":"111 ","pages":"Article 107548"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology and teratology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892036225001254","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders that can impact communication and social behaviors. Evidence suggests that the causes of ASD are likely a combination of genetic and environmental factors, such as air pollution. Particulate matter (PM) is the solid and liquid portion of air pollution that can vary in size and has been associated with many health impacts, including cardiorespiratory impacts, and has more recently been found to be associated with the prevalence of ASD. However, little is known about the phenotypic presentations of this association between PM and ASD, therefore, the zebrafish (Danio rerio) model was employed to study behaviors often associated with ASD as a result of PM exposure. Zebrafish larvae were exposed for a total of 5 days to PM standard reference material (SRM1649b) and a commonly used home remedy, melatonin, beginning at 6 h post-fertilization and various behavioral assays were performed on subsequent days for a total of 13 days. Observed and quantified behaviors were compared to a positive control, valproic acid (VPA). Generally, PM exposure did not elicit behavior resembling that of VPA exposure and the interactions between PM and VPA did not induce additive or synergistic behavioral patterns, as expected. Melatonin supplementation did not ameliorate most of the observed behavioral impacts of PM or VPA exposure. These results have prompted additional questions about the phenotypic presentations of ASD as a result of PM exposure and contribute to growing knowledge about disease-environment interactions.
期刊介绍:
Neurotoxicology and Teratology provides a forum for publishing new information regarding the effects of chemical and physical agents on the developing, adult or aging nervous system. In this context, the fields of neurotoxicology and teratology include studies of agent-induced alterations of nervous system function, with a focus on behavioral outcomes and their underlying physiological and neurochemical mechanisms. The Journal publishes original, peer-reviewed Research Reports of experimental, clinical, and epidemiological studies that address the neurotoxicity and/or functional teratology of pesticides, solvents, heavy metals, nanomaterials, organometals, industrial compounds, mixtures, drugs of abuse, pharmaceuticals, animal and plant toxins, atmospheric reaction products, and physical agents such as radiation and noise. These reports include traditional mammalian neurotoxicology experiments, human studies, studies using non-mammalian animal models, and mechanistic studies in vivo or in vitro. Special Issues, Reviews, Commentaries, Meeting Reports, and Symposium Papers provide timely updates on areas that have reached a critical point of synthesis, on aspects of a scientific field undergoing rapid change, or on areas that present special methodological or interpretive problems. Theoretical Articles address concepts and potential mechanisms underlying actions of agents of interest in the nervous system. The Journal also publishes Brief Communications that concisely describe a new method, technique, apparatus, or experimental result.