Investigation of In2O3: Zn NO2 gas sensors with nanoimprinted nanorod array and gold-black nanoparticles

IF 8.7 Q1 CHEMISTRY, PHYSICAL
Mu-Ju Wu , Ting-Zhong Yan , Yu-Heng Hung , Chun-Hung Lin , Hsin-Ying Lee , Ching-Ting Lee
{"title":"Investigation of In2O3: Zn NO2 gas sensors with nanoimprinted nanorod array and gold-black nanoparticles","authors":"Mu-Ju Wu ,&nbsp;Ting-Zhong Yan ,&nbsp;Yu-Heng Hung ,&nbsp;Chun-Hung Lin ,&nbsp;Hsin-Ying Lee ,&nbsp;Ching-Ting Lee","doi":"10.1016/j.apsadv.2025.100833","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, to develop nitrogen dioxide (NO<sub>2</sub>) gas sensors with high response, high selectivity, and low operating temperature, indium oxide (In<sub>2</sub>O<sub>3</sub>) sensing membranes prepared using a magnetron radio frequency (RF) sputtering system and annealed in a hydrogen atmosphere at various temperatures were initially investigated. X-ray photoelectron spectroscopy analysis revealed that more oxygen vacancies were found in the In<sub>2</sub>O<sub>3</sub> films annealed at 400 °C for 10 min, indicating more gas adsorption sites were in the sensing membranes. Zn-doped In<sub>2</sub>O<sub>3</sub> (In<sub>2</sub>O<sub>3</sub>:Zn) sensing membranes were created using a magnetron RF co-sputtering system with various RF powers for the ZnO target. The NO<sub>2</sub> gas sensors using In<sub>2</sub>O<sub>3</sub>:Zn sensing membranes with a Zn content of 5.4 at.% exhibited a response of 66.0 under 10-ppm NO<sub>2</sub> concentration. Additionally, the In<sub>2</sub>O<sub>3</sub>:Zn sensing membranes were deposited on various periodic nanoimprinted nanorod array patterns. The response of NO<sub>2</sub> gas sensors using In<sub>2</sub>O<sub>3</sub>:Zn sensing membranes with a Zn content of 5.4 at.% deposited on a 400-nm-periodic nanoimprinted nanorod array was 94.4 under 10-ppm NO<sub>2</sub> concentration. Finally, p-type gold-black nanoparticles (NPs) were decorated on the In<sub>2</sub>O<sub>3</sub>:Zn sensing membranes to form p-n heterojunctions. The NO<sub>2</sub> gas sensors using gold-black NPs/In<sub>2</sub>O<sub>3</sub>:Zn sensing membranes with Zn content of 5.4 at.% and gold content of 1.1 at.% demonstrated optimal sensing performance. Under a NO<sub>2</sub> concentration of 10 ppm, the gas sensors achieved a maximum response of 141.5 at an operating temperature of 115 °C. Moreover, the NO<sub>2</sub> gas sensor could detect concentrations as low as 0.1 ppm and exhibited high selectivity towards NO<sub>2</sub> gas.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"29 ","pages":"Article 100833"},"PeriodicalIF":8.7000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925001436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, to develop nitrogen dioxide (NO2) gas sensors with high response, high selectivity, and low operating temperature, indium oxide (In2O3) sensing membranes prepared using a magnetron radio frequency (RF) sputtering system and annealed in a hydrogen atmosphere at various temperatures were initially investigated. X-ray photoelectron spectroscopy analysis revealed that more oxygen vacancies were found in the In2O3 films annealed at 400 °C for 10 min, indicating more gas adsorption sites were in the sensing membranes. Zn-doped In2O3 (In2O3:Zn) sensing membranes were created using a magnetron RF co-sputtering system with various RF powers for the ZnO target. The NO2 gas sensors using In2O3:Zn sensing membranes with a Zn content of 5.4 at.% exhibited a response of 66.0 under 10-ppm NO2 concentration. Additionally, the In2O3:Zn sensing membranes were deposited on various periodic nanoimprinted nanorod array patterns. The response of NO2 gas sensors using In2O3:Zn sensing membranes with a Zn content of 5.4 at.% deposited on a 400-nm-periodic nanoimprinted nanorod array was 94.4 under 10-ppm NO2 concentration. Finally, p-type gold-black nanoparticles (NPs) were decorated on the In2O3:Zn sensing membranes to form p-n heterojunctions. The NO2 gas sensors using gold-black NPs/In2O3:Zn sensing membranes with Zn content of 5.4 at.% and gold content of 1.1 at.% demonstrated optimal sensing performance. Under a NO2 concentration of 10 ppm, the gas sensors achieved a maximum response of 141.5 at an operating temperature of 115 °C. Moreover, the NO2 gas sensor could detect concentrations as low as 0.1 ppm and exhibited high selectivity towards NO2 gas.

Abstract Image

纳米印迹纳米棒阵列和金-黑纳米颗粒In2O3: Zn NO2气体传感器的研究
为了开发具有高响应、高选择性和低工作温度的二氧化氮(NO2)气体传感器,本研究采用磁控射频(RF)溅射系统制备氧化铟(In2O3)传感膜,并在不同温度下在氢气气氛中退火。x射线光电子能谱分析表明,在400℃退火10 min的In2O3薄膜中发现了更多的氧空位,表明在传感膜中有更多的气体吸附位点。采用不同射频功率的磁控射频共溅射系统制备了ZnO掺杂In2O3 (In2O3:Zn)传感膜。NO2气体传感器采用Zn含量为5.4 at的In2O3:Zn传感膜。在NO2浓度为10 ppm时,%的响应为66.0。此外,In2O3:Zn传感膜被沉积在不同的周期性纳米印迹纳米棒阵列上。采用Zn含量为5.4 at的In2O3:Zn传感膜对NO2气体传感器的响应。当NO2浓度为10 ppm时,400 nm周期印迹纳米棒阵列的沉积率为94.4。最后,将p型金黑纳米粒子(NPs)修饰在In2O3:Zn传感膜上,形成p-n异质结。NO2气体传感器采用Zn含量为5.4 at的金黑色NPs/In2O3:Zn传感膜。%,含金量1.1 at。%表现出最佳的传感性能。当NO2浓度为10 ppm时,在115°C的工作温度下,气体传感器的最大响应为141.5。此外,NO2气体传感器可以检测低至0.1 ppm的浓度,并对NO2气体表现出高选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信