Combinatorial interpretation of the Schlesinger–Zudilin stuffle product

IF 1.2 2区 数学 Q2 MATHEMATICS
Benjamin Brindle
{"title":"Combinatorial interpretation of the Schlesinger–Zudilin stuffle product","authors":"Benjamin Brindle","doi":"10.1016/j.jcta.2025.106103","DOIUrl":null,"url":null,"abstract":"<div><div>We derive an explicit formula for the quasi–shuffle product satisfied by Schlesinger–Zudilin Multiple <em>q</em>-Zeta Values, expressed in terms of partition data. To achieve this, we interpret Schlesinger–Zudilin Multiple <em>q</em>-Zeta Values as generating series of distinguished marked partitions, which are partitions whose Young diagrams have certain rows and columns marked. Together with the description of duality using marked partitions in <span><span>[4]</span></span>, and Bachmann's conjecture (<span><span>[1]</span></span>) that all linear relations among Multiple <em>q</em>-Zeta Values are implied by duality and the stuffle product, this paper completes the description of the conjectural structure of Multiple <em>q</em>-Zeta Values using marked partitions.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"218 ","pages":"Article 106103"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000986","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We derive an explicit formula for the quasi–shuffle product satisfied by Schlesinger–Zudilin Multiple q-Zeta Values, expressed in terms of partition data. To achieve this, we interpret Schlesinger–Zudilin Multiple q-Zeta Values as generating series of distinguished marked partitions, which are partitions whose Young diagrams have certain rows and columns marked. Together with the description of duality using marked partitions in [4], and Bachmann's conjecture ([1]) that all linear relations among Multiple q-Zeta Values are implied by duality and the stuffle product, this paper completes the description of the conjectural structure of Multiple q-Zeta Values using marked partitions.
Schlesinger-Zudilin填充物积的组合解释
给出了用分区数据表示的Schlesinger-Zudilin多重q-Zeta值所满足的拟洗牌积的显式公式。为了实现这一点,我们将Schlesinger-Zudilin Multiple q-Zeta值解释为生成一系列区分标记的分区,这些分区的Young图中标记了某些行和列。结合[4]中使用标记分区对对偶性的描述,以及Bachmann关于多个q-Zeta值之间的所有线性关系都由对偶性和填充积隐含的猜想([1]),本文完成了对多个q-Zeta值使用标记分区的推测结构的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信