Characteristics of dissipative forces on thermal and solutal transport in boger fluid with thermophoretic particle deposition: An intelligent neuro-computing paradigm

Q1 Chemical Engineering
Munawar Abbas , Abdulbasit A. Darem , Asma A. Alhashmi , Nashwan Adnan Othman , Dilsora Abduvalieva , Youssef El Khatib , Ali Akgül , Muhammad Shafique
{"title":"Characteristics of dissipative forces on thermal and solutal transport in boger fluid with thermophoretic particle deposition: An intelligent neuro-computing paradigm","authors":"Munawar Abbas ,&nbsp;Abdulbasit A. Darem ,&nbsp;Asma A. Alhashmi ,&nbsp;Nashwan Adnan Othman ,&nbsp;Dilsora Abduvalieva ,&nbsp;Youssef El Khatib ,&nbsp;Ali Akgül ,&nbsp;Muhammad Shafique","doi":"10.1016/j.ijft.2025.101382","DOIUrl":null,"url":null,"abstract":"<div><div>The goal of this examination is to evaluate the Marangoni convection influences on gyrotactic microbes in Boger fluid flow across a sheet with porous medium and thermophoretic particle deposition. The thermophoretic particle deposition is a basic method in electrical and aero-solution engineering for transporting small particles across a temperature gradient. Our model combines the Levenberg–Marquardt method with AI-based neural networks for higher accuracy than traditional methods. It supports industrial fluid dynamics, biomedical engineering, and environmental research. AI-based forecasts also enhance nanofluid heat transfer and advanced biotechnology applications. The proposed paradigm has significant applications in bioengineering, environmental sciences, and industrial operations. Enhancing microbial mobility in bioreactors can enhance the production of biofuel and wastewater treatment. In the medical sciences, targeted medication delivery is aided by an understanding of microbe dynamics in non-Newtonian fluids. The model also advances nanotechnology by improving particle deposition techniques in microfluidic devices. By assessing how microorganisms react to external stimuli, it promotes ecological balance and water quality regulation in marine environments. In a range of engineering and scientific domains, the intelligent neuro-computing approach enhances prediction accuracy even more, making it a practical instrument for real-time monitoring and optimization.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"29 ","pages":"Article 101382"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725003283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this examination is to evaluate the Marangoni convection influences on gyrotactic microbes in Boger fluid flow across a sheet with porous medium and thermophoretic particle deposition. The thermophoretic particle deposition is a basic method in electrical and aero-solution engineering for transporting small particles across a temperature gradient. Our model combines the Levenberg–Marquardt method with AI-based neural networks for higher accuracy than traditional methods. It supports industrial fluid dynamics, biomedical engineering, and environmental research. AI-based forecasts also enhance nanofluid heat transfer and advanced biotechnology applications. The proposed paradigm has significant applications in bioengineering, environmental sciences, and industrial operations. Enhancing microbial mobility in bioreactors can enhance the production of biofuel and wastewater treatment. In the medical sciences, targeted medication delivery is aided by an understanding of microbe dynamics in non-Newtonian fluids. The model also advances nanotechnology by improving particle deposition techniques in microfluidic devices. By assessing how microorganisms react to external stimuli, it promotes ecological balance and water quality regulation in marine environments. In a range of engineering and scientific domains, the intelligent neuro-computing approach enhances prediction accuracy even more, making it a practical instrument for real-time monitoring and optimization.
热反射粒子沉积对热流体和溶质输运的耗散力特征:一种智能神经计算范式
本研究的目的是评估马兰戈尼对流对Boger流体流过多孔介质和热泳沉颗粒沉积薄片时回旋微生物的影响。热电泳颗粒沉积是电气和航空溶液工程中用于通过温度梯度输送小颗粒的一种基本方法。我们的模型结合了Levenberg-Marquardt方法和基于人工智能的神经网络,比传统方法具有更高的精度。它支持工业流体动力学、生物医学工程和环境研究。基于人工智能的预测也增强了纳米流体传热和先进生物技术的应用。所提出的范例在生物工程、环境科学和工业操作中具有重要的应用。提高生物反应器中微生物的流动性可以提高生物燃料的生产和废水处理。在医学科学中,对非牛顿流体中微生物动力学的理解有助于靶向药物的递送。该模型还通过改进微流体装置中的颗粒沉积技术来推进纳米技术。通过评估微生物对外界刺激的反应,促进海洋环境的生态平衡和水质调节。在一系列工程和科学领域中,智能神经计算方法进一步提高了预测精度,使其成为实时监测和优化的实用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信