Uncertainty quantification in neural state-space models: Applications for experiment design and uncertainty-aware MPC

IF 2.6 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Milad Banitalebi Dehkordi, Marco Forgione, Dario Piga
{"title":"Uncertainty quantification in neural state-space models: Applications for experiment design and uncertainty-aware MPC","authors":"Milad Banitalebi Dehkordi,&nbsp;Marco Forgione,&nbsp;Dario Piga","doi":"10.1016/j.ejcon.2025.101359","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the problem of uncertainty quantification in neural state-space models from a Bayesian perspective. The posterior distribution over the neural network parameters is derived and approximated using the Laplace method, resulting in a Gaussian approximation of the model’s predictive distribution. Based on the predictive distribution, we introduce an uncertainty index that quantifies the model’s confidence over any possible input sequence, enabling the detection of out-of-distribution regimes. This index is then leveraged in two applications: (i) experiment design for the identification of state-space models, and (ii) model predictive control under epistemic uncertainty.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"85 ","pages":"Article 101359"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358025001888","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of uncertainty quantification in neural state-space models from a Bayesian perspective. The posterior distribution over the neural network parameters is derived and approximated using the Laplace method, resulting in a Gaussian approximation of the model’s predictive distribution. Based on the predictive distribution, we introduce an uncertainty index that quantifies the model’s confidence over any possible input sequence, enabling the detection of out-of-distribution regimes. This index is then leveraged in two applications: (i) experiment design for the identification of state-space models, and (ii) model predictive control under epistemic uncertainty.
神经状态空间模型中的不确定性量化:在实验设计和不确定性感知MPC中的应用
本文从贝叶斯的角度研究了神经网络状态空间模型中的不确定性量化问题。利用拉普拉斯方法推导和逼近神经网络参数的后验分布,得到模型预测分布的高斯近似。基于预测分布,我们引入了一个不确定性指数来量化模型在任何可能输入序列上的置信度,从而能够检测出分布外的状态。然后,该指标在两个应用中加以利用:(i)用于识别状态空间模型的实验设计,以及(ii)在认知不确定性下的模型预测控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Control
European Journal of Control 工程技术-自动化与控制系统
CiteScore
5.80
自引率
5.90%
发文量
131
审稿时长
1 months
期刊介绍: The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field. The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering. The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications. Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results. The design and implementation of a successful control system requires the use of a range of techniques: Modelling Robustness Analysis Identification Optimization Control Law Design Numerical analysis Fault Detection, and so on.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信