Investigations on the material removal and damage formation mechanisms of WC-Co cemented carbide in hybrid laser softening and single-grain scratching processes
Shibo Li , Chongjun Wu , Lingwen Chen , Jingzhu Pang , Yaqin Zhou , Steven Y. Liang
{"title":"Investigations on the material removal and damage formation mechanisms of WC-Co cemented carbide in hybrid laser softening and single-grain scratching processes","authors":"Shibo Li , Chongjun Wu , Lingwen Chen , Jingzhu Pang , Yaqin Zhou , Steven Y. Liang","doi":"10.1016/j.triboint.2025.111129","DOIUrl":null,"url":null,"abstract":"<div><div>Cemented carbide poses significant challenges in precision and damage-free machining due to its extreme hardness and brittleness. This study investigates the material removal mechanisms in Laser-Assisted Machining (LAM) through quasi-static and grinding-type Single-Grain Scratching (SGS) experiments on WC-Co cemented carbide (K10 grade). The effects of Laser Softening Degree (LSD), scratching modes, loads, and strain rates were systematically analyzed, focusing on friction/wear behavior and crack propagation. And the LSD was quantitatively characterized by the Heat-Affected Zone overlap ratio (O<sub>HAZ</sub>). Results demonstrate that laser softening can effectively reduce the surface friction coefficient (by approximately 40 %) and scratching forces while inhibiting tool wear and surface damage. Acoustic emission signal reveals the formation of brittle chips and radial crack networks during scratching. Furthermore, grinding-type SGS shows a distinct transition from the deformation removal stage to the elastic contact stage. Notably, increasing LSD and scratching speed (4.45 m/s ∼ 40.08 m/s) can both significantly inhibit scratching surface wear and enhance the mechanical response rate of the subsurface microstructure. This work provides fundamental insights into thermal-mechanical coupling in LAM, offering practical guidance for controlling grains’ wear in the precision machining of cemented carbides.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"214 ","pages":"Article 111129"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X25006243","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cemented carbide poses significant challenges in precision and damage-free machining due to its extreme hardness and brittleness. This study investigates the material removal mechanisms in Laser-Assisted Machining (LAM) through quasi-static and grinding-type Single-Grain Scratching (SGS) experiments on WC-Co cemented carbide (K10 grade). The effects of Laser Softening Degree (LSD), scratching modes, loads, and strain rates were systematically analyzed, focusing on friction/wear behavior and crack propagation. And the LSD was quantitatively characterized by the Heat-Affected Zone overlap ratio (OHAZ). Results demonstrate that laser softening can effectively reduce the surface friction coefficient (by approximately 40 %) and scratching forces while inhibiting tool wear and surface damage. Acoustic emission signal reveals the formation of brittle chips and radial crack networks during scratching. Furthermore, grinding-type SGS shows a distinct transition from the deformation removal stage to the elastic contact stage. Notably, increasing LSD and scratching speed (4.45 m/s ∼ 40.08 m/s) can both significantly inhibit scratching surface wear and enhance the mechanical response rate of the subsurface microstructure. This work provides fundamental insights into thermal-mechanical coupling in LAM, offering practical guidance for controlling grains’ wear in the precision machining of cemented carbides.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.