Jun Yuan , Jiya Hao , Aixia Liu , Shan Liu , Shuchang Chai , Shangwei Lin
{"title":"The completely independent spanning trees in P4-free graphs","authors":"Jun Yuan , Jiya Hao , Aixia Liu , Shan Liu , Shuchang Chai , Shangwei Lin","doi":"10.1016/j.dam.2025.08.048","DOIUrl":null,"url":null,"abstract":"<div><div>Hasunuma has conjectured that every <span><math><mrow><mn>2</mn><mi>k</mi></mrow></math></span>-connected graph admits <span><math><mi>k</mi></math></span> completely independent spanning trees. Pai et al. showed the conjecture is true for complete graphs, complete bipartite graphs and complete tripartite graphs, all of which are <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free. Chen et al. showed there exist two completely independent spanning trees in every 4-connected <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graph. In this paper, we further discuss the completely independent spanning trees in both complete multipartite graphs and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs. Let <span><math><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></msub></math></span> be a complete <span><math><mi>m</mi></math></span>-partite graph, where <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>.</mo></mrow></math></span> We first prove that <span><math><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></msub></math></span> contains <span><math><mrow><mo>min</mo><mrow><mo>{</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></munderover><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>⌋</mo></mrow><mo>}</mo></mrow></mrow></math></span> completely independent spanning trees. This implies that every <span><math><mrow><mn>2</mn><mi>k</mi></mrow></math></span>-connected complete <span><math><mi>m</mi></math></span>-partite graph admits <span><math><mi>k</mi></math></span> completely independent spanning trees if its order is at least <span><math><mrow><mn>3</mn><mi>k</mi><mo>.</mo></mrow></math></span> We further provide the upper and lower bounds of the maximum number of completely independent spanning trees in complete <span><math><mi>m</mi></math></span>-partite graphs, and demonstrate that these bounds are tight. Second, we show there exist <span><math><mi>k</mi></math></span> completely independent spanning trees in every <span><math><mrow><mn>2</mn><mi>k</mi></mrow></math></span>-connected <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graph of order at least <span><math><mrow><mn>3</mn><mi>k</mi><mo>.</mo></mrow></math></span> Finally, we construct a kind of minimum <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs that contain <span><math><mi>m</mi></math></span> completely independent spanning trees.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 573-585"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004883","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Hasunuma has conjectured that every -connected graph admits completely independent spanning trees. Pai et al. showed the conjecture is true for complete graphs, complete bipartite graphs and complete tripartite graphs, all of which are -free. Chen et al. showed there exist two completely independent spanning trees in every 4-connected -free graph. In this paper, we further discuss the completely independent spanning trees in both complete multipartite graphs and -free graphs. Let be a complete -partite graph, where We first prove that contains completely independent spanning trees. This implies that every -connected complete -partite graph admits completely independent spanning trees if its order is at least We further provide the upper and lower bounds of the maximum number of completely independent spanning trees in complete -partite graphs, and demonstrate that these bounds are tight. Second, we show there exist completely independent spanning trees in every -connected -free graph of order at least Finally, we construct a kind of minimum -free graphs that contain completely independent spanning trees.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.