Monowar Mahmud , Tarek Abedin , Md Mahfuzur Rahman , Shamiul Ashraf Shoishob , Tiong Sieh Kiong , Mohammad Nur-E-Alam
{"title":"Integrating demand forecasting and deep reinforcement learning for real-time electric vehicle charging price optimization","authors":"Monowar Mahmud , Tarek Abedin , Md Mahfuzur Rahman , Shamiul Ashraf Shoishob , Tiong Sieh Kiong , Mohammad Nur-E-Alam","doi":"10.1016/j.jup.2025.102038","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid growth of electric vehicles (EVs) demands efficient, grid-friendly charging systems. This study introduces a dynamic pricing framework combining short-term demand forecasting and deep reinforcement learning. Using Adaptive Charging Network (ACN) data, XGBoost predicts charging demand accurately (R<sup>2</sup> = 0.84, MAE = 0.45 kW). Compared to a uniform rate applied to all charging usage, set at 0.15 USD/kWh across all hours, with no adjustment for system demand conditions or time-of-day, the optimized strategy enhanced total daily revenue by 133 % and diminished load variance by 72.37 %. The PPO agent also surpassed traditional Time-of-Use and demand-based pricing models by 67–94 %, while ensuring pricing stability with a price standard deviation of 0.132 USD/kWh. The simulation results illustrate the framework's efficacy in facilitating off-peak charging and improving grid reliability.</div></div>","PeriodicalId":23554,"journal":{"name":"Utilities Policy","volume":"96 ","pages":"Article 102038"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Utilities Policy","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957178725001535","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid growth of electric vehicles (EVs) demands efficient, grid-friendly charging systems. This study introduces a dynamic pricing framework combining short-term demand forecasting and deep reinforcement learning. Using Adaptive Charging Network (ACN) data, XGBoost predicts charging demand accurately (R2 = 0.84, MAE = 0.45 kW). Compared to a uniform rate applied to all charging usage, set at 0.15 USD/kWh across all hours, with no adjustment for system demand conditions or time-of-day, the optimized strategy enhanced total daily revenue by 133 % and diminished load variance by 72.37 %. The PPO agent also surpassed traditional Time-of-Use and demand-based pricing models by 67–94 %, while ensuring pricing stability with a price standard deviation of 0.132 USD/kWh. The simulation results illustrate the framework's efficacy in facilitating off-peak charging and improving grid reliability.
期刊介绍:
Utilities Policy is deliberately international, interdisciplinary, and intersectoral. Articles address utility trends and issues in both developed and developing economies. Authors and reviewers come from various disciplines, including economics, political science, sociology, law, finance, accounting, management, and engineering. Areas of focus include the utility and network industries providing essential electricity, natural gas, water and wastewater, solid waste, communications, broadband, postal, and public transportation services.
Utilities Policy invites submissions that apply various quantitative and qualitative methods. Contributions are welcome from both established and emerging scholars as well as accomplished practitioners. Interdisciplinary, comparative, and applied works are encouraged. Submissions to the journal should have a clear focus on governance, performance, and/or analysis of public utilities with an aim toward informing the policymaking process and providing recommendations as appropriate. Relevant topics and issues include but are not limited to industry structures and ownership, market design and dynamics, economic development, resource planning, system modeling, accounting and finance, infrastructure investment, supply and demand efficiency, strategic management and productivity, network operations and integration, supply chains, adaptation and flexibility, service-quality standards, benchmarking and metrics, benefit-cost analysis, behavior and incentives, pricing and demand response, economic and environmental regulation, regulatory performance and impact, restructuring and deregulation, and policy institutions.