Uncertainty Propagation and Input Sensitivity in Life Cycle Assessment: An Application to Phase Change Materials

Humberto Santos*,  and , Silvia Guillén-Lambea, 
{"title":"Uncertainty Propagation and Input Sensitivity in Life Cycle Assessment: An Application to Phase Change Materials","authors":"Humberto Santos*,&nbsp; and ,&nbsp;Silvia Guillén-Lambea,&nbsp;","doi":"10.1021/acssusresmgt.5c00298","DOIUrl":null,"url":null,"abstract":"<p >Global and local sensitivity analyses are essential for identifying key parameters in life cycle assessment models. However, due to limited information on parameter uncertainty, they are often overlooked. This paper’s objective is to address this gap by proposing a methodological framework for defining input sensitivity, for midpoint and end point indicators, and a quantitative approach for determining input uncertainties. Applied to a case study on xylitol production as a phase change material, the methodology uses Monte Carlo for uncertainty propagation and Python’s SALib to calculate Sobol indices. Results show a 2% relative error in midpoint indicators, aligning with pedigree matrix methods. While accuracy depends on choosing the appropriate distribution function, both global and local sensitivity analyses showed consistent outcomes. This structured, user-friendly approach offers decision-makers a simplified yet effective way to prioritize inputs, either by verifying multiple indicators individually or focusing on damage-oriented indicators. Future studies could refine database coefficients and explore their influence on overall uncertainty, as well as the nonlinearity of the model if the parameters are correlated, offering opportunities to enhance accuracy.</p><p >The results are useful for targeting sensitive inputs to reduce the environmental impacts in the production of bio-based phase change materials.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"2 8","pages":"1593–1604"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acssusresmgt.5c00298","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssusresmgt.5c00298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Global and local sensitivity analyses are essential for identifying key parameters in life cycle assessment models. However, due to limited information on parameter uncertainty, they are often overlooked. This paper’s objective is to address this gap by proposing a methodological framework for defining input sensitivity, for midpoint and end point indicators, and a quantitative approach for determining input uncertainties. Applied to a case study on xylitol production as a phase change material, the methodology uses Monte Carlo for uncertainty propagation and Python’s SALib to calculate Sobol indices. Results show a 2% relative error in midpoint indicators, aligning with pedigree matrix methods. While accuracy depends on choosing the appropriate distribution function, both global and local sensitivity analyses showed consistent outcomes. This structured, user-friendly approach offers decision-makers a simplified yet effective way to prioritize inputs, either by verifying multiple indicators individually or focusing on damage-oriented indicators. Future studies could refine database coefficients and explore their influence on overall uncertainty, as well as the nonlinearity of the model if the parameters are correlated, offering opportunities to enhance accuracy.

The results are useful for targeting sensitive inputs to reduce the environmental impacts in the production of bio-based phase change materials.

生命周期评估中的不确定性传播和输入灵敏度:相变材料的应用
全局和局部敏感性分析对于确定生命周期评估模型中的关键参数至关重要。然而,由于有关参数不确定性的信息有限,它们往往被忽略。本文的目的是通过提出定义输入敏感性的方法学框架、中点和终点指标以及确定输入不确定性的定量方法来解决这一差距。应用于木糖醇作为相变材料生产的案例研究,该方法使用蒙特卡罗进行不确定性传播,使用Python的SALib计算Sobol指数。结果显示,中点指标的相对误差为2%,与系谱矩阵方法一致。而准确性取决于选择合适的分布函数,全局和局部敏感性分析显示一致的结果。这种结构化的、用户友好的方法为决策者提供了一种简化而有效的方式来确定输入的优先次序,既可以单独核实多个指标,也可以侧重于面向损害的指标。未来的研究可以细化数据库系数,探索它们对整体不确定性的影响,以及参数相关时模型的非线性,为提高精度提供机会。研究结果有助于在生物基相变材料生产过程中减少敏感输入对环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信