Jeanne Poughon , Camille Lepoittevin , Eduardo Vicente , Marion Carme , Georgeta Mihai , Francisco Lario Leza , Andrea Piotti , Camilla Avanzi , Maurizio Marchi , Giovanni Giuseppe Vendramin , Caroline Scotti-Saintaigne , Bruno Fady , Caroline Teyssier , Marta Benito Garzón
{"title":"Near-infrared spectroscopy-based models correctly classify Abies alba seed origin and predict germination properties","authors":"Jeanne Poughon , Camille Lepoittevin , Eduardo Vicente , Marion Carme , Georgeta Mihai , Francisco Lario Leza , Andrea Piotti , Camilla Avanzi , Maurizio Marchi , Giovanni Giuseppe Vendramin , Caroline Scotti-Saintaigne , Bruno Fady , Caroline Teyssier , Marta Benito Garzón","doi":"10.1016/j.foreco.2025.123068","DOIUrl":null,"url":null,"abstract":"<div><div>Forestry industry requires high-quantity and quality seeds for afforestation and assisted migration programs. Finding reliable non-destructive methods to characterize seeds would significantly enhance efforts to identify climate-adapted populations. This study presents near-infrared (NIR) spectroscopy models to classify seed origin and predict germination characteristics at different temperatures non-destructively. We focus on <em>Abies alba</em> Mill., a key European forest tree with genetic variation along climatic gradients and seeds with shallow physiological dormancy. Seeds from six populations were analyzed using NIR spectroscopy, and germination was tested at 15°C, 20°C, and 25°C after stratification treatments at 4°C (0 or 3 weeks). Population classification accuracy using Partial Least Squares Discriminant Analysis was 69 %, with contributing NIR absorbance peaks at 1712, 1929, and 2111 nm, linked to moisture content and storage compounds. NIR spectra explained 51 % and 65 % of the variation in germination probability and timing using Partial Least Squares Regression, with contributing peaks at 1712, 1929, 2111, 1632, and 2073 nm. General Linear Mixed-Effects Models showed that NIR absorbances (processed using a Principal Component Analysis to reduce dimensionality) contributed to 39 % of the germination probability variance explained by fixed-effects, and the stratification treatment was the most important driver explaining germination time. Our results proved the utility of NIR-based tools to effectively classify bulked seeds and predict germination, opening new perspectives to nursery and forestry sectors and populations’ adaptation and adjustments to warming climate. This study will facilitate further investigations on the physiological processes that occur during dormancy, a critical process for forest regeneration given the expected impact of shorter and warmer winters on seed behavior.</div></div>","PeriodicalId":12350,"journal":{"name":"Forest Ecology and Management","volume":"597 ","pages":"Article 123068"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecology and Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378112725005766","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Forestry industry requires high-quantity and quality seeds for afforestation and assisted migration programs. Finding reliable non-destructive methods to characterize seeds would significantly enhance efforts to identify climate-adapted populations. This study presents near-infrared (NIR) spectroscopy models to classify seed origin and predict germination characteristics at different temperatures non-destructively. We focus on Abies alba Mill., a key European forest tree with genetic variation along climatic gradients and seeds with shallow physiological dormancy. Seeds from six populations were analyzed using NIR spectroscopy, and germination was tested at 15°C, 20°C, and 25°C after stratification treatments at 4°C (0 or 3 weeks). Population classification accuracy using Partial Least Squares Discriminant Analysis was 69 %, with contributing NIR absorbance peaks at 1712, 1929, and 2111 nm, linked to moisture content and storage compounds. NIR spectra explained 51 % and 65 % of the variation in germination probability and timing using Partial Least Squares Regression, with contributing peaks at 1712, 1929, 2111, 1632, and 2073 nm. General Linear Mixed-Effects Models showed that NIR absorbances (processed using a Principal Component Analysis to reduce dimensionality) contributed to 39 % of the germination probability variance explained by fixed-effects, and the stratification treatment was the most important driver explaining germination time. Our results proved the utility of NIR-based tools to effectively classify bulked seeds and predict germination, opening new perspectives to nursery and forestry sectors and populations’ adaptation and adjustments to warming climate. This study will facilitate further investigations on the physiological processes that occur during dormancy, a critical process for forest regeneration given the expected impact of shorter and warmer winters on seed behavior.
期刊介绍:
Forest Ecology and Management publishes scientific articles linking forest ecology with forest management, focusing on the application of biological, ecological and social knowledge to the management and conservation of plantations and natural forests. The scope of the journal includes all forest ecosystems of the world.
A peer-review process ensures the quality and international interest of the manuscripts accepted for publication. The journal encourages communication between scientists in disparate fields who share a common interest in ecology and forest management, bridging the gap between research workers and forest managers.
We encourage submission of papers that will have the strongest interest and value to the Journal''s international readership. Some key features of papers with strong interest include:
1. Clear connections between the ecology and management of forests;
2. Novel ideas or approaches to important challenges in forest ecology and management;
3. Studies that address a population of interest beyond the scale of single research sites, Three key points in the design of forest experiments, Forest Ecology and Management 255 (2008) 2022-2023);
4. Review Articles on timely, important topics. Authors are welcome to contact one of the editors to discuss the suitability of a potential review manuscript.
The Journal encourages proposals for special issues examining important areas of forest ecology and management. Potential guest editors should contact any of the Editors to begin discussions about topics, potential papers, and other details.