Mechanochemical Destruction of PFAS: Critical Effects of Co-Milling Agents

Mohamed Ammar, Sherif Ashraf, Julia Farias, Clinton Williams and Jonas Baltrusaitis*, 
{"title":"Mechanochemical Destruction of PFAS: Critical Effects of Co-Milling Agents","authors":"Mohamed Ammar,&nbsp;Sherif Ashraf,&nbsp;Julia Farias,&nbsp;Clinton Williams and Jonas Baltrusaitis*,&nbsp;","doi":"10.1021/acssusresmgt.5c00194","DOIUrl":null,"url":null,"abstract":"<p >This perspective explores the emerging field of mechanochemical degradation of per- and polyfluoroalkyl substances (PFAS) as an innovative, scalable, and sustainable approach. The degradation of PFAS, particularly their robust carbon–fluorine bonds, remains a significant challenge. Mechanochemical methods utilizing co-milling agents can facilitate the destruction of PFAS compounds. Here, we highlight the importance of reported co-milling agents, such as potassium hydroxide (KOH), silica (SiO<sub>2</sub>), alumina (Al<sub>2</sub>O<sub>3</sub>), sodium persulfate (PS), and lanthanum oxide (La<sub>2</sub>O<sub>3</sub>). Each co-milling agent demonstrates varying degrees of effectiveness in PFAS degradation. Mechanochemical degradation in the presence of KOH alone has strong degradation capabilities (99% after 3 h, 275 rpm) but also produces hazardous byproducts such as potassium fluoride (KF) that present waste management and safety concerns. In contrast, SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> exhibit slower PFAS degradation rates (42.2 and 98% degradation efficiency, 2 h, 350 rpm) and require other additives, but yield product mixtures that have improved sustainability. Studies have shown a near-complete degradation (99.95–100%) of perfluoroalkyl sulfonates (PFSAs), which entail stable Si–F bonds, by using co-milling agents, such as SiO<sub>2</sub>, and full degradation of PFOS, PFOA, PFHxS, and PFBS using La<sub>2</sub>O<sub>3</sub>, through electron donation to the carbon atom, which destabilizes the C–F bond. Mechanistic stages of PFAS degradation, such as mechanical activation, bond cleavage, mineralization, and the role of protonation, electron transfer, and the formation of stable bonds in the degradation process, are emphasized. Further research to refine and optimize mechanochemical processes, with a focus on novel co-milling agents and synergistic approaches, can enhance PFAS remediation and address global environmental concerns.</p><p >This review examines mechanochemical PFAS degradation using co-milling agents, highlighting their potential as scalable, low-energy solutions for remediating persistent pollutants and reducing environmental contamination in soils and wastes.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"2 8","pages":"1340–1352"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acssusresmgt.5c00194","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssusresmgt.5c00194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This perspective explores the emerging field of mechanochemical degradation of per- and polyfluoroalkyl substances (PFAS) as an innovative, scalable, and sustainable approach. The degradation of PFAS, particularly their robust carbon–fluorine bonds, remains a significant challenge. Mechanochemical methods utilizing co-milling agents can facilitate the destruction of PFAS compounds. Here, we highlight the importance of reported co-milling agents, such as potassium hydroxide (KOH), silica (SiO2), alumina (Al2O3), sodium persulfate (PS), and lanthanum oxide (La2O3). Each co-milling agent demonstrates varying degrees of effectiveness in PFAS degradation. Mechanochemical degradation in the presence of KOH alone has strong degradation capabilities (99% after 3 h, 275 rpm) but also produces hazardous byproducts such as potassium fluoride (KF) that present waste management and safety concerns. In contrast, SiO2 and Al2O3 exhibit slower PFAS degradation rates (42.2 and 98% degradation efficiency, 2 h, 350 rpm) and require other additives, but yield product mixtures that have improved sustainability. Studies have shown a near-complete degradation (99.95–100%) of perfluoroalkyl sulfonates (PFSAs), which entail stable Si–F bonds, by using co-milling agents, such as SiO2, and full degradation of PFOS, PFOA, PFHxS, and PFBS using La2O3, through electron donation to the carbon atom, which destabilizes the C–F bond. Mechanistic stages of PFAS degradation, such as mechanical activation, bond cleavage, mineralization, and the role of protonation, electron transfer, and the formation of stable bonds in the degradation process, are emphasized. Further research to refine and optimize mechanochemical processes, with a focus on novel co-milling agents and synergistic approaches, can enhance PFAS remediation and address global environmental concerns.

This review examines mechanochemical PFAS degradation using co-milling agents, highlighting their potential as scalable, low-energy solutions for remediating persistent pollutants and reducing environmental contamination in soils and wastes.

PFAS的机械化学破坏:共磨剂的关键作用
这一观点探讨了全氟烷基和多氟烷基物质(PFAS)机械化学降解的新兴领域,作为一种创新的、可扩展的和可持续的方法。PFAS的降解,特别是其坚固的碳氟键,仍然是一个重大挑战。利用共磨剂的机械化学方法可以促进PFAS化合物的破坏。在这里,我们强调了报道的共磨剂的重要性,如氢氧化钾(KOH)、二氧化硅(SiO2)、氧化铝(Al2O3)、过硫酸钠(PS)和氧化镧(La2O3)。每种共磨剂在降解PFAS方面表现出不同程度的有效性。仅在KOH存在下的机械化学降解具有很强的降解能力(3小时,275转/分钟后降解99%),但也会产生有害的副产品,如氟化钾(KF),这引起了废物管理和安全问题。相比之下,SiO2和Al2O3表现出较慢的PFAS降解率(降解效率分别为42.2和98%,2小时,350转/分),并且需要其他添加剂,但产生的产品混合物具有更好的可持续性。研究表明,使用SiO2等共磨剂可以几乎完全降解(99.95-100%)具有稳定Si-F键的全氟烷基磺酸盐(pfsa),使用La2O3可以通过碳原子的电子赋能来完全降解PFOS、PFOA、PFHxS和PFBS,从而破坏C-F键的稳定性。强调了PFAS降解的机理阶段,如机械活化、键解理、矿化、质子化作用、电子转移和降解过程中稳定键的形成。进一步研究改进和优化机械化学过程,重点关注新型共磨剂和协同方法,可以加强PFAS的修复和解决全球环境问题。这篇综述研究了使用共磨剂的机械化学PFAS降解,强调了它们作为可扩展的、低能耗的解决方案的潜力,用于修复持久性污染物和减少土壤和废物中的环境污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信