Hybrid Spike-Facilitated Capture and Biofilm Destruction Co-Enhances Ultrasound-Mediated Bactericidal Therapy

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-08-26 DOI:10.1021/acsnano.5c09843
Xiaomin Zhao, Yuqi Cao, Jia Hu, Zongxin Yue, Xin Liu and Dawei Deng*, 
{"title":"Hybrid Spike-Facilitated Capture and Biofilm Destruction Co-Enhances Ultrasound-Mediated Bactericidal Therapy","authors":"Xiaomin Zhao,&nbsp;Yuqi Cao,&nbsp;Jia Hu,&nbsp;Zongxin Yue,&nbsp;Xin Liu and Dawei Deng*,&nbsp;","doi":"10.1021/acsnano.5c09843","DOIUrl":null,"url":null,"abstract":"<p >Bacterial pneumonia, a leading global cause of infectious disease-related mortality, faces critical challenges from antibiotic resistance and microbiome disruption associated with conventional therapies. Herein, inspired by the antibacterial microstructure of gecko skin, the study developed a tannic acid-modified Mn–ZnO hybrid microparticle (denoted as MZT) with a biomimetic cocklebur-inspired spine-like architecture, achieving synergistic modulation of surface morphology and chemical composition. The material demonstrates dual antimicrobial mechanisms: (i) the microspikes significantly enhance bacterial capture efficiency by leveraging polyphenol-mediated bacterial membrane interactions, enabling synergistic bacterial trapping and physical penetration for targeted antimicrobial action; (ii) a piezoelectricity-driven, acid-responsive reactive oxygen species catalytic system achieves pathogen-selective eradication under ultrasound activation without harming healthy tissues. Theoretical analyses revealed that surface piezoelectric fields enhance catalytic kinetics through charge redistribution. In vivo studies demonstrated precise pulmonary delivery via a nebulized system in <i>Klebsiella pneumoniae</i>-infected mice, exhibiting superior therapeutic efficacy. Cell viability assays and histopathological evaluations confirmed excellent biosafety at both cellular and organismal levels. This work establishes a bioinspired material design paradigm for targeted antimicrobial strategies with minimized resistance risks and microbiome preservation.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 35","pages":"31720–31739"},"PeriodicalIF":16.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c09843","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial pneumonia, a leading global cause of infectious disease-related mortality, faces critical challenges from antibiotic resistance and microbiome disruption associated with conventional therapies. Herein, inspired by the antibacterial microstructure of gecko skin, the study developed a tannic acid-modified Mn–ZnO hybrid microparticle (denoted as MZT) with a biomimetic cocklebur-inspired spine-like architecture, achieving synergistic modulation of surface morphology and chemical composition. The material demonstrates dual antimicrobial mechanisms: (i) the microspikes significantly enhance bacterial capture efficiency by leveraging polyphenol-mediated bacterial membrane interactions, enabling synergistic bacterial trapping and physical penetration for targeted antimicrobial action; (ii) a piezoelectricity-driven, acid-responsive reactive oxygen species catalytic system achieves pathogen-selective eradication under ultrasound activation without harming healthy tissues. Theoretical analyses revealed that surface piezoelectric fields enhance catalytic kinetics through charge redistribution. In vivo studies demonstrated precise pulmonary delivery via a nebulized system in Klebsiella pneumoniae-infected mice, exhibiting superior therapeutic efficacy. Cell viability assays and histopathological evaluations confirmed excellent biosafety at both cellular and organismal levels. This work establishes a bioinspired material design paradigm for targeted antimicrobial strategies with minimized resistance risks and microbiome preservation.

Abstract Image

Abstract Image

混合尖峰促进捕获和生物膜破坏共同增强超声介导的杀菌治疗
细菌性肺炎是全球传染病相关死亡的主要原因,面临着抗生素耐药性和与常规治疗相关的微生物组破坏的严峻挑战。在此,受壁虎皮肤抗菌微观结构的启发,该研究开发了一种单宁酸修饰的Mn-ZnO杂化微粒子(MZT),具有仿生cockleber启发的棘状结构,实现了表面形态和化学成分的协同调节。该材料展示了双重抗菌机制:(i)微刺突通过利用多酚介导的细菌膜相互作用显著提高细菌捕获效率,实现细菌捕获和靶向抗菌作用的物理渗透;(ii)压电驱动的酸反应活性氧催化系统在超声激活下实现病原体选择性根除,而不损害健康组织。理论分析表明,表面压电场通过电荷再分配增强了催化动力学。体内研究表明,通过雾化系统对感染肺炎克雷伯菌的小鼠进行精确的肺部递送,显示出优越的治疗效果。细胞活力测定和组织病理学评估证实在细胞和组织水平上具有良好的生物安全性。这项工作建立了一个受生物启发的材料设计范例,用于最小化耐药风险和微生物组保存的靶向抗菌策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信