Breaking the Cross‐Sensitivity Limit: Simultaneous Stress and Temperature Dual‐Mode Sensing Via Colorimetric Mechanoluminescence in SrF2:Eu2+,Sm3+

IF 10 1区 物理与天体物理 Q1 OPTICS
Yuhan Jiang, Shuangqiang Fang, Tianchun Lang, Haoliang Cheng, Jiaqi Ou, Lu Yin, Jiali Yu, Tiancheng Zhang, Le Wang
{"title":"Breaking the Cross‐Sensitivity Limit: Simultaneous Stress and Temperature Dual‐Mode Sensing Via Colorimetric Mechanoluminescence in SrF2:Eu2+,Sm3+","authors":"Yuhan Jiang, Shuangqiang Fang, Tianchun Lang, Haoliang Cheng, Jiaqi Ou, Lu Yin, Jiali Yu, Tiancheng Zhang, Le Wang","doi":"10.1002/lpor.202501643","DOIUrl":null,"url":null,"abstract":"Mechanoluminescent (ML) materials have emerged as promising candidates for self‐powered sensing systems, yet the simultaneous decoupling of stress and temperature remains a critical challenge. Here, a novel Eu<jats:sup>2+</jats:sup>,Sm<jats:sup>3+</jats:sup> co‐doped SrF<jats:sub>2</jats:sub>‐based ML material is presented that enables orthogonal stress‐temperature dual‐parameter sensing through a triboelectricity‐driven ML mechanism. By leveraging the distinct emission behaviors of Eu<jats:sup>2+</jats:sup> (350–550 nm) and Sm<jats:sup>3+</jats:sup> (550–750 nm), the integrated ML intensity exhibits a linear response to stress, while the ML intensity ratio of Eu<jats:sup>2+</jats:sup> and Sm<jats:sup>3+</jats:sup> follows an exponential correlation with temperature, yielding high maximum absolute (0.162 K<jats:sup>−1</jats:sup>) and relative (0.05%·K<jats:sup>−1</jats:sup>) sensitivities. Crucially, this material exhibits a unique ML property: ML color changes exclusively with the single parameter ‐ temperature, while the integral ML intensity corresponds to the magnitude of force. Thus, using OpenCV visual recognition, temperature signals can be independently decoupled within a complicated force‐temperature conditions, eliminating cross‐sensitivity. A graded alarm system based on Hue, Saturation and Value chromaticity analysis validates its capacity of real‐time, non‐contact temperature monitoring in simulated industrial scenarios. This work establishes a paradigm for dual‐mode optical decoupling in ML materials, advancing applications in precise perception of various parameters in a multi‐physics field coupling environment.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"82 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202501643","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanoluminescent (ML) materials have emerged as promising candidates for self‐powered sensing systems, yet the simultaneous decoupling of stress and temperature remains a critical challenge. Here, a novel Eu2+,Sm3+ co‐doped SrF2‐based ML material is presented that enables orthogonal stress‐temperature dual‐parameter sensing through a triboelectricity‐driven ML mechanism. By leveraging the distinct emission behaviors of Eu2+ (350–550 nm) and Sm3+ (550–750 nm), the integrated ML intensity exhibits a linear response to stress, while the ML intensity ratio of Eu2+ and Sm3+ follows an exponential correlation with temperature, yielding high maximum absolute (0.162 K−1) and relative (0.05%·K−1) sensitivities. Crucially, this material exhibits a unique ML property: ML color changes exclusively with the single parameter ‐ temperature, while the integral ML intensity corresponds to the magnitude of force. Thus, using OpenCV visual recognition, temperature signals can be independently decoupled within a complicated force‐temperature conditions, eliminating cross‐sensitivity. A graded alarm system based on Hue, Saturation and Value chromaticity analysis validates its capacity of real‐time, non‐contact temperature monitoring in simulated industrial scenarios. This work establishes a paradigm for dual‐mode optical decoupling in ML materials, advancing applications in precise perception of various parameters in a multi‐physics field coupling environment.
突破交叉灵敏度限制:SrF2:Eu2+,Sm3+中同时应力和温度双模式的比色机械发光传感
机械发光(ML)材料已经成为自供电传感系统的有希望的候选者,但同时解耦应力和温度仍然是一个关键的挑战。本文提出了一种新型的Eu2+,Sm3+共掺杂SrF2基ML材料,通过摩擦电驱动的ML机制实现正交应力-温度双参数传感。利用Eu2+ (350-550 nm)和Sm3+ (550-750 nm)不同的发射行为,综合的ML强度对应力表现出线性响应,而Eu2+和Sm3+的ML强度比与温度呈指数相关,产生较高的最大绝对灵敏度(0.162 K−1)和相对灵敏度(0.05%·K−1)。至关重要的是,这种材料表现出独特的ML特性:ML颜色只随单一参数温度而变化,而整体ML强度对应于力的大小。因此,使用OpenCV视觉识别,温度信号可以在复杂的力-温度条件下独立解耦,消除交叉灵敏度。基于色相、饱和度和值色度分析的分级报警系统验证了其在模拟工业场景中实时、非接触式温度监测的能力。这项工作为ML材料的双模光学解耦建立了一个范例,推进了在多物理场耦合环境中对各种参数的精确感知的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信