Cody Martin, Joanne B. Emerson, Simon Roux, Karthik Anantharaman
{"title":"A call for caution in the biological interpretation of viral auxiliary metabolic genes","authors":"Cody Martin, Joanne B. Emerson, Simon Roux, Karthik Anantharaman","doi":"10.1038/s41564-025-02095-4","DOIUrl":null,"url":null,"abstract":"Virus-encoded auxiliary metabolic genes (AMGs) are non-essential genes that increase viral fitness by maintaining or manipulating host metabolism during infection. AMGs are intriguing from an evolutionary perspective, as most viral genomes are highly compact and have limited coding capacity for accessory genes. Advances in viral (meta)genomics have expanded the detection of putative AMGs from viruses in diverse environments. However, this has also led to many instances of misannotation due to the limitations of annotation tools, resulting in misinterpretations about the roles of some viral genes. Here, we highlight studies that support claims about AMGs with more than just function predictions for guidance on best practices. We then propose the adoption of an expanded, inclusive view of all genes auxiliary to core viral functions with the term ‘auxiliary viral genes’ (AVGs), alongside an associated eco-evolutionary framework for considering the types of analyses that can better support claims made about AVGs. This Perspective discusses virus-encoded auxiliary metabolic genes and provides a framework for the biological interpretation of these genes.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"10 9","pages":"2122-2129"},"PeriodicalIF":19.4000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41564-025-02095-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Virus-encoded auxiliary metabolic genes (AMGs) are non-essential genes that increase viral fitness by maintaining or manipulating host metabolism during infection. AMGs are intriguing from an evolutionary perspective, as most viral genomes are highly compact and have limited coding capacity for accessory genes. Advances in viral (meta)genomics have expanded the detection of putative AMGs from viruses in diverse environments. However, this has also led to many instances of misannotation due to the limitations of annotation tools, resulting in misinterpretations about the roles of some viral genes. Here, we highlight studies that support claims about AMGs with more than just function predictions for guidance on best practices. We then propose the adoption of an expanded, inclusive view of all genes auxiliary to core viral functions with the term ‘auxiliary viral genes’ (AVGs), alongside an associated eco-evolutionary framework for considering the types of analyses that can better support claims made about AVGs. This Perspective discusses virus-encoded auxiliary metabolic genes and provides a framework for the biological interpretation of these genes.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.