Survival Prediction in Allogeneic Haematopoietic Stem Cell Transplant Recipients Using Pre- and Post-Transplant Factors and Computational Intelligence

IF 4.2
Panagiotis G. Asteris, Danial J. Armaghani, Amir H. Gandomi, Ahmed Salih Mohammed, Zoi Bousiou, Ioannis Batsis, Nikolaos Spyridis, Georgios Karavalakis, Anna Vardi, Markos Z. Tsoukals, Leonidas Triantafyllidis, Evangelos I. Koutras, Nikos Zygouris, Georgios A. Drosopoulos, Leonidas Dritsas, Nikolaos A. Fountas, Nikolaos M. Vaxevanidis, Abidhan Bardhan, Pijush Samui, George D. Hatzigeorgiou, Jian Zhou, Konstantina V. Leontari, Paschalis Evangelidis, Nikolaos Kotsiou, Ioanna Sakellari, Eleni Gavriilaki
{"title":"Survival Prediction in Allogeneic Haematopoietic Stem Cell Transplant Recipients Using Pre- and Post-Transplant Factors and Computational Intelligence","authors":"Panagiotis G. Asteris,&nbsp;Danial J. Armaghani,&nbsp;Amir H. Gandomi,&nbsp;Ahmed Salih Mohammed,&nbsp;Zoi Bousiou,&nbsp;Ioannis Batsis,&nbsp;Nikolaos Spyridis,&nbsp;Georgios Karavalakis,&nbsp;Anna Vardi,&nbsp;Markos Z. Tsoukals,&nbsp;Leonidas Triantafyllidis,&nbsp;Evangelos I. Koutras,&nbsp;Nikos Zygouris,&nbsp;Georgios A. Drosopoulos,&nbsp;Leonidas Dritsas,&nbsp;Nikolaos A. Fountas,&nbsp;Nikolaos M. Vaxevanidis,&nbsp;Abidhan Bardhan,&nbsp;Pijush Samui,&nbsp;George D. Hatzigeorgiou,&nbsp;Jian Zhou,&nbsp;Konstantina V. Leontari,&nbsp;Paschalis Evangelidis,&nbsp;Nikolaos Kotsiou,&nbsp;Ioanna Sakellari,&nbsp;Eleni Gavriilaki","doi":"10.1111/jcmm.70672","DOIUrl":null,"url":null,"abstract":"<p>Advancements in artificial intelligence (AI) predictive models have emerged as valuable tools for predicting survival outcomes in allogeneic haematopoietic stem cell transplantation (allo-HSCT). These models primarily focus on pre-transplant factors, while algorithms incorporating changes in patient's status post-allo-HSCT are lacking. The aim of this study was to develop a predictive soft computing model assessing survival outcomes in allo-HSCT recipients. In this study, we assembled a comprehensive database comprising of 564 consecutive adult patients who underwent allo-HSCT between 2015 and 2024. Our algorithm selectively considers critical parameters from the database, ranking and evaluating them based on their impact on patient outcomes. By utilising the Data Ensemble Refinement Greedy Algorithm, we developed an AI model with 93.26% accuracy in predicting survivorship status in allo-HSCT recipients. Our model used only seven parameters, including age, disease, disease phase, creatinine levels at day 2 post-allo-HSCT, platelet engraftment, acute graft-versus-host disease (GvHD) and chronic GvHD. External validation of our AI model is considered essential. Machine learning algorithms have the potential to improve the prediction of long-term survival outcomes for patients undergoing allo-HSCT.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 16","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70672","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in artificial intelligence (AI) predictive models have emerged as valuable tools for predicting survival outcomes in allogeneic haematopoietic stem cell transplantation (allo-HSCT). These models primarily focus on pre-transplant factors, while algorithms incorporating changes in patient's status post-allo-HSCT are lacking. The aim of this study was to develop a predictive soft computing model assessing survival outcomes in allo-HSCT recipients. In this study, we assembled a comprehensive database comprising of 564 consecutive adult patients who underwent allo-HSCT between 2015 and 2024. Our algorithm selectively considers critical parameters from the database, ranking and evaluating them based on their impact on patient outcomes. By utilising the Data Ensemble Refinement Greedy Algorithm, we developed an AI model with 93.26% accuracy in predicting survivorship status in allo-HSCT recipients. Our model used only seven parameters, including age, disease, disease phase, creatinine levels at day 2 post-allo-HSCT, platelet engraftment, acute graft-versus-host disease (GvHD) and chronic GvHD. External validation of our AI model is considered essential. Machine learning algorithms have the potential to improve the prediction of long-term survival outcomes for patients undergoing allo-HSCT.

Abstract Image

利用移植前和移植后因素和计算智能预测同种异体造血干细胞移植受者的生存
人工智能(AI)预测模型的进步已经成为预测同种异体造血干细胞移植(alloo - hsct)存活结果的有价值工具。这些模型主要关注移植前的因素,而缺乏纳入患者移植后状态变化的算法。本研究的目的是开发一种预测软计算模型,评估同种异体造血干细胞移植受体的生存结果。在这项研究中,我们收集了一个综合数据库,包括564名在2015年至2024年间连续接受同种异体造血干细胞移植的成年患者。我们的算法选择性地考虑数据库中的关键参数,根据它们对患者结果的影响对它们进行排名和评估。通过使用数据集成优化贪婪算法,我们开发了一个人工智能模型,预测同种异体移植受者的生存状态的准确率为93.26%。我们的模型只使用了7个参数,包括年龄、疾病、疾病分期、同种异体造血干细胞移植后第2天的肌酐水平、血小板植入、急性移植物抗宿主病(GvHD)和慢性GvHD。人工智能模型的外部验证被认为是必不可少的。机器学习算法有可能改善对接受同种异体造血干细胞移植患者长期生存结果的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
0
期刊介绍: The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries. It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信