{"title":"Electrocatalytic Urea Synthesis via C─N Coupling: Catalyst Design and Mechanistic Insights","authors":"Jinjie Zhuang, Jing Song, Wei Shi, Jiaying Tian, Xinxin Kong, Lu Lu, Peiyong Qin","doi":"10.1002/cctc.202500779","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic urea synthesis has emerged as a promising green strategy for sustainable nitrogen and carbon utilization, which is achieved by coupling CO₂ with small nitrogenous molecules (e.g., N₂, NO₃⁻, NO₂⁻) to form C─N bonds under mild conditions. This review systematically summarizes recent research advances in electrocatalytic urea synthesis, with a focus on catalyst design strategies, reaction mechanisms, and performance optimization. First, diverse catalytic synthesis approaches, such as vacancy engineering, heteroatom doping, crystal facet engineering, atomic-scale modulation, alloying, and heterostructure construction are analyzed to assess their impact on catalytic activity, selectivity, and stability. Then, mechanistic insights into C─N coupling reactions are discussed, including key reaction intermediates, proton-coupled electron transfer processes, and the influence of catalytic active sites on product selectivity. Next, advanced characterization techniques and detection methods for the precise quantification of urea are reviewed. Finally, future challenges and opportunities in electrocatalytic urea synthesis are highlighted. This review aims to provide a comprehensive understanding of electrocatalytic urea synthesis and to guide the rational design of efficient catalysts, thereby accelerating the development of sustainable urea production.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 16","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202500779","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalytic urea synthesis has emerged as a promising green strategy for sustainable nitrogen and carbon utilization, which is achieved by coupling CO₂ with small nitrogenous molecules (e.g., N₂, NO₃⁻, NO₂⁻) to form C─N bonds under mild conditions. This review systematically summarizes recent research advances in electrocatalytic urea synthesis, with a focus on catalyst design strategies, reaction mechanisms, and performance optimization. First, diverse catalytic synthesis approaches, such as vacancy engineering, heteroatom doping, crystal facet engineering, atomic-scale modulation, alloying, and heterostructure construction are analyzed to assess their impact on catalytic activity, selectivity, and stability. Then, mechanistic insights into C─N coupling reactions are discussed, including key reaction intermediates, proton-coupled electron transfer processes, and the influence of catalytic active sites on product selectivity. Next, advanced characterization techniques and detection methods for the precise quantification of urea are reviewed. Finally, future challenges and opportunities in electrocatalytic urea synthesis are highlighted. This review aims to provide a comprehensive understanding of electrocatalytic urea synthesis and to guide the rational design of efficient catalysts, thereby accelerating the development of sustainable urea production.
期刊介绍:
With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.