Performance Enhanced Copper-Graphene Hetero Interconnect Structures in Crossbar Arrays for Neuromorphic Computing

IF 1.5 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Suyash Kushwaha;Chintu Bhaskara Rao;Shamini P R;Sourajeet Roy;Rohit Sharma
{"title":"Performance Enhanced Copper-Graphene Hetero Interconnect Structures in Crossbar Arrays for Neuromorphic Computing","authors":"Suyash Kushwaha;Chintu Bhaskara Rao;Shamini P R;Sourajeet Roy;Rohit Sharma","doi":"10.1109/JMMCT.2025.3593872","DOIUrl":null,"url":null,"abstract":"In this paper, novel copper graphene heterogeneous interconnect structures are proposed which retain the ease of fabrication while having far better electrical performance when compared to the conventional copper interconnects. In the nanoscale regime, signal integrity (SI) of the copper interconnects degrades significantly. To address the signal integrity issues, these heterogeneous interconnects are developed at 7 nm technology nodes which are further used to make the crossbar arrays for neuromorphic computing. The proposed copper graphene heterogeneous interconnects were designed by stacking the layers of copper and multilayer graphene nanoribbons (MLGNRs) one over the other and a detailed signal integrity analysis is done based on the quantities like the per unit length Resistance, Insertion Loss (IL), Return Loss (RL), eye diagrams, surface charge density and volume current density. The results shows that the proposed interconnects outperformed the copper interconnects based on each and every SI quantity. Finally, in the application example, the best performing heterogeneous interconnects are used to create larger crossbar arrays with sizes 64 × 64, 128 × 128. Further, the key performance matrices such as the delay time, the rise time and the fall time are analyzed and compared with the conventional crossbars made from the copper interconnects. The results in application example proved that the heterogeneous interconnects performs better than the copper interconnects for neuromorphic computing.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"379-387"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11106507/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, novel copper graphene heterogeneous interconnect structures are proposed which retain the ease of fabrication while having far better electrical performance when compared to the conventional copper interconnects. In the nanoscale regime, signal integrity (SI) of the copper interconnects degrades significantly. To address the signal integrity issues, these heterogeneous interconnects are developed at 7 nm technology nodes which are further used to make the crossbar arrays for neuromorphic computing. The proposed copper graphene heterogeneous interconnects were designed by stacking the layers of copper and multilayer graphene nanoribbons (MLGNRs) one over the other and a detailed signal integrity analysis is done based on the quantities like the per unit length Resistance, Insertion Loss (IL), Return Loss (RL), eye diagrams, surface charge density and volume current density. The results shows that the proposed interconnects outperformed the copper interconnects based on each and every SI quantity. Finally, in the application example, the best performing heterogeneous interconnects are used to create larger crossbar arrays with sizes 64 × 64, 128 × 128. Further, the key performance matrices such as the delay time, the rise time and the fall time are analyzed and compared with the conventional crossbars made from the copper interconnects. The results in application example proved that the heterogeneous interconnects performs better than the copper interconnects for neuromorphic computing.
用于神经形态计算的交叉杆阵列中性能增强的铜-石墨烯异质互连结构
本文提出了一种新型的铜石墨烯异质互连结构,与传统的铜互连相比,它在保持易于制造的同时具有更好的电气性能。在纳米尺度下,铜互连的信号完整性(SI)显著下降。为了解决信号完整性问题,这些异构互连是在7纳米技术节点上开发的,这些节点进一步用于制造神经形态计算的交叉杆阵列。通过将铜层和多层石墨烯纳米带(mlgnr)层层堆叠,设计了所提出的铜石墨烯非均质互连,并基于单位长度电阻、插入损耗(IL)、回波损耗(RL)、眼图、表面电荷密度和体积电流密度等量进行了详细的信号完整性分析。结果表明,基于每一个SI量,所提出的互连都优于铜互连。最后,在应用实例中,使用性能最好的异构互连来创建尺寸为64 × 64、128 × 128的更大的交叉棒阵列。此外,分析了其延迟时间、上升时间和下降时间等关键性能矩阵,并与传统的铜互连横梁进行了比较。应用实例表明,异构互连在神经形态计算中的性能优于铜互连。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信