High-throughput microfluidic generation of self-assembled, uniform 3D vascularized and mineralized bone organoids without matrix biomaterials

IF 3.7 Q1 CHEMISTRY, ANALYTICAL
Xue Li , Zijiao Zhang , Tian Tian , Chen Chen , Xin Xu , Yuzhu He , Yaran Zang , Jianan Hui , Hongju Mao , Huiying Liu
{"title":"High-throughput microfluidic generation of self-assembled, uniform 3D vascularized and mineralized bone organoids without matrix biomaterials","authors":"Xue Li ,&nbsp;Zijiao Zhang ,&nbsp;Tian Tian ,&nbsp;Chen Chen ,&nbsp;Xin Xu ,&nbsp;Yuzhu He ,&nbsp;Yaran Zang ,&nbsp;Jianan Hui ,&nbsp;Hongju Mao ,&nbsp;Huiying Liu","doi":"10.1016/j.talo.2025.100531","DOIUrl":null,"url":null,"abstract":"<div><div>Bone organoids hold great promise for modeling bone-related diseases, improving bone injury repair strategies, and enabling high-throughput drug screening. However, conventional approaches rely heavily on matrix biomaterials—such as Matrigel, collagen gels, or 3D-printed scaffolds—which introduce undefined parameters, pose manufacturing complexities, and raise cost barriers, potentially limiting clinical translation. To address these challenges, we present a novel high-throughput microfluidic chip that generates 540 uniformly sized, scaffold-free 3D bone organoids simultaneously within six independent channels. By co-cultivating human bone marrow mesenchymal stem cells (hBMSCs), human umbilical vein endothelial cells (HUVECs), and mineralized collagen (MC), self-assembled bone organoids formed by the third day and progressively compacted over time, exhibiting enhanced cell viability and proliferation. The inclusion of MC upregulated multiple osteogenic markers (OCN, ALP, COL-1, RUNX2, and BMP-2), while endothelial markers (PECAM-1, HIF-1α, and VEGF) remained consistently expressed, reflecting stable vascularization and mineralization potential. Overall, this high-throughput, matrix-free microfluidic platform offers a biomimetic environment for the investigation of osteogenesis and angiogenesis and holds significant promise for advanced material assessment, drug screening, and disease modeling.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"12 ","pages":"Article 100531"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266683192500133X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bone organoids hold great promise for modeling bone-related diseases, improving bone injury repair strategies, and enabling high-throughput drug screening. However, conventional approaches rely heavily on matrix biomaterials—such as Matrigel, collagen gels, or 3D-printed scaffolds—which introduce undefined parameters, pose manufacturing complexities, and raise cost barriers, potentially limiting clinical translation. To address these challenges, we present a novel high-throughput microfluidic chip that generates 540 uniformly sized, scaffold-free 3D bone organoids simultaneously within six independent channels. By co-cultivating human bone marrow mesenchymal stem cells (hBMSCs), human umbilical vein endothelial cells (HUVECs), and mineralized collagen (MC), self-assembled bone organoids formed by the third day and progressively compacted over time, exhibiting enhanced cell viability and proliferation. The inclusion of MC upregulated multiple osteogenic markers (OCN, ALP, COL-1, RUNX2, and BMP-2), while endothelial markers (PECAM-1, HIF-1α, and VEGF) remained consistently expressed, reflecting stable vascularization and mineralization potential. Overall, this high-throughput, matrix-free microfluidic platform offers a biomimetic environment for the investigation of osteogenesis and angiogenesis and holds significant promise for advanced material assessment, drug screening, and disease modeling.

Abstract Image

无基质生物材料的自组装、均匀三维血管化和矿化骨类器官的高通量微流控生成
骨类器官在骨相关疾病建模、改善骨损伤修复策略和实现高通量药物筛选方面具有很大的前景。然而,传统的方法严重依赖于基质生物材料,如Matrigel、胶原蛋白凝胶或3d打印支架,这些材料引入了未定义的参数,造成了制造的复杂性,并提高了成本壁垒,潜在地限制了临床转化。为了解决这些挑战,我们提出了一种新型的高通量微流控芯片,它可以在六个独立的通道内同时生成540个均匀大小的无支架3D骨类器官。通过共同培养人骨髓间充质干细胞(hBMSCs)、人脐静脉内皮细胞(HUVECs)和矿化胶原(MC),自组装的类骨器官在第三天形成,并随着时间的推移逐渐压缩,显示出增强的细胞活力和增殖能力。MC的加入上调了多种成骨标志物(OCN、ALP、COL-1、RUNX2和BMP-2),而内皮标志物(PECAM-1、HIF-1α和VEGF)的表达保持一致,反映了稳定的血管化和矿化潜力。总的来说,这种高通量、无基质的微流控平台为研究成骨和血管生成提供了一个仿生环境,并在先进的材料评估、药物筛选和疾病建模方面具有重要的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Talanta Open
Talanta Open Chemistry-Analytical Chemistry
CiteScore
5.20
自引率
0.00%
发文量
86
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信