Complexity and structural results for the hull and convexity numbers in cycle convexity for graph products

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Bijo S. Anand , Ullas Chandran S.V. , Julliano R. Nascimento , Revathy S. Nair
{"title":"Complexity and structural results for the hull and convexity numbers in cycle convexity for graph products","authors":"Bijo S. Anand ,&nbsp;Ullas Chandran S.V. ,&nbsp;Julliano R. Nascimento ,&nbsp;Revathy S. Nair","doi":"10.1016/j.dam.2025.08.039","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph and <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In the cycle convexity, we say that <span><math><mi>S</mi></math></span> is <em>cycle convex</em> if for any <span><math><mrow><mi>u</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∖</mo><mi>S</mi></mrow></math></span>, the induced subgraph of <span><math><mrow><mi>S</mi><mo>∪</mo><mrow><mo>{</mo><mi>u</mi><mo>}</mo></mrow></mrow></math></span> contains no cycle that includes <span><math><mi>u</mi></math></span>. The <em>cycle convex hull</em> of <span><math><mi>S</mi></math></span> is the smallest convex set containing <span><math><mi>S</mi></math></span>. The <em>cycle hull number</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mo>hncc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the cardinality of the smallest set <span><math><mi>S</mi></math></span> such that the convex hull of <span><math><mi>S</mi></math></span> is <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. The <em>cycle convexity number</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mo>concc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the maximum cardinality of a proper cycle convex set of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. This paper studies cycle convexity in graph products. We show that the cycle hull number is always two for strong and lexicographic products. For the Cartesian, we establish tight bounds for this product and provide a closed formula when the factors are trees, generalizing an existing result for grid graphs. In addition, given a graph <span><math><mi>G</mi></math></span> and an integer <span><math><mi>k</mi></math></span>, we prove that <span><math><mrow><mo>hncc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>k</mi></mrow></math></span> is NP-complete even if <span><math><mi>G</mi></math></span> is a bipartite Cartesian product graph, addressing an open question in the literature. Furthermore, we present exact formulas for the cycle convexity number in those three graph products. That leads to the NP-completeness of, given a graph <span><math><mi>G</mi></math></span> and an integer <span><math><mi>k</mi></math></span>, deciding whether <span><math><mrow><mo>concc</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>k</mi></mrow></math></span>, when <span><math><mi>G</mi></math></span> is a Cartesian, strong or lexicographic product graph.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 552-561"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004810","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a graph and SV(G). In the cycle convexity, we say that S is cycle convex if for any uV(G)S, the induced subgraph of S{u} contains no cycle that includes u. The cycle convex hull of S is the smallest convex set containing S. The cycle hull number of G, denoted by hncc(G), is the cardinality of the smallest set S such that the convex hull of S is V(G). The cycle convexity number of G, denoted by concc(G), is the maximum cardinality of a proper cycle convex set of V(G). This paper studies cycle convexity in graph products. We show that the cycle hull number is always two for strong and lexicographic products. For the Cartesian, we establish tight bounds for this product and provide a closed formula when the factors are trees, generalizing an existing result for grid graphs. In addition, given a graph G and an integer k, we prove that hncc(G)k is NP-complete even if G is a bipartite Cartesian product graph, addressing an open question in the literature. Furthermore, we present exact formulas for the cycle convexity number in those three graph products. That leads to the NP-completeness of, given a graph G and an integer k, deciding whether concc(G)k, when G is a Cartesian, strong or lexicographic product graph.
图积的循环凸性的复杂度和结构结果及凸数
设G为图,S⊥V(G)。在环凸性中,我们说S是环凸,如果对于任意u∈V(G)∈S, S的归纳子图∪{u}不包含包含u的环。S的环凸包是包含S的最小凸集。G的环凸包数,用hncc(G)表示,是使S的凸包为V(G)的最小集S的基数。G的环凸数用concc(G)表示,它是V(G)的固有环凸集的最大基数。本文研究了图积中的循环凸性。我们证明,对于强产品和词典产品,循环壳体数总是2。对于笛卡尔坐标系,我们建立了该乘积的紧边界,并提供了因子为树时的封闭公式,推广了网格图的现有结果。此外,在给定图G和整数k的情况下,证明了即使G是二部笛卡尔积图,hncc(G)≤k也是np完全的,解决了文献中的一个开放问题。进一步给出了这三种图积的圈凸数的精确公式。当给定一个图G和一个整数k,当G是笛卡尔积图、强积图或字典积图时,决定conc (G)是否≥k,这就导致了np完备性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信