L.A. Carpintero , C. Terrados , D. González-Francés , K.P. Sulca , V. Alonso , M.A. González , O. Martínez
{"title":"Electroluminescence inspections of PV modules and strings by a self-powering configuration in daylight mode","authors":"L.A. Carpintero , C. Terrados , D. González-Francés , K.P. Sulca , V. Alonso , M.A. González , O. Martínez","doi":"10.1016/j.solener.2025.113913","DOIUrl":null,"url":null,"abstract":"<div><div>Electroluminescence (EL) imaging is a widely used tool for identifying defects in the solar cells of photovoltaic (PV) modules. Traditional EL inspections require dark conditions and module disassembly, making them costly and logistically challenging. Daylight Electroluminescence (dEL) has emerged as a cost-effective alternative, enabling on-site inspections under any irradiance conditions without module dismounting and thereby reducing costs. However, EL inspections require current injection, necessitating an external power source. Solutions like bidirectional inverters have been proposed to address this challenge. This study proposes a novel self-powered dEL methodology that uses other PV strings in the plant to supply the necessary current. The method employs a switching procedure to filter ambient light and allows entire string inspection without dismounting modules or using external power. Field tests across various irradiance conditions show that the resulting images are comparable to those obtained in controlled darkroom environments, validating the method’s effectiveness and operational advantages.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"301 ","pages":"Article 113913"},"PeriodicalIF":6.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25006760","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Electroluminescence (EL) imaging is a widely used tool for identifying defects in the solar cells of photovoltaic (PV) modules. Traditional EL inspections require dark conditions and module disassembly, making them costly and logistically challenging. Daylight Electroluminescence (dEL) has emerged as a cost-effective alternative, enabling on-site inspections under any irradiance conditions without module dismounting and thereby reducing costs. However, EL inspections require current injection, necessitating an external power source. Solutions like bidirectional inverters have been proposed to address this challenge. This study proposes a novel self-powered dEL methodology that uses other PV strings in the plant to supply the necessary current. The method employs a switching procedure to filter ambient light and allows entire string inspection without dismounting modules or using external power. Field tests across various irradiance conditions show that the resulting images are comparable to those obtained in controlled darkroom environments, validating the method’s effectiveness and operational advantages.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass