Comprehensive analysis and insights into the relationship between temperature coefficients, PV failures, and investigating their correlation with other PV parameters

IF 6 2区 工程技术 Q2 ENERGY & FUELS
N. Belhaouas , H. Hafdaoui , J.M. Nunzi , S. Khatir , D. Ernst , F. Mehareb , N. Madjoudj , H. Assem , D. Saheb-Koussa
{"title":"Comprehensive analysis and insights into the relationship between temperature coefficients, PV failures, and investigating their correlation with other PV parameters","authors":"N. Belhaouas ,&nbsp;H. Hafdaoui ,&nbsp;J.M. Nunzi ,&nbsp;S. Khatir ,&nbsp;D. Ernst ,&nbsp;F. Mehareb ,&nbsp;N. Madjoudj ,&nbsp;H. Assem ,&nbsp;D. Saheb-Koussa","doi":"10.1016/j.solener.2025.113891","DOIUrl":null,"url":null,"abstract":"<div><div>Ensuring long-term performance and reliability of photovoltaic (PV) modules is essential for minimizing maintenance costs and supporting large-scale solar deployment — particularly in regions like Algeria, where solar energy plays a key role in national energy transition strategies. Among the key performance indicators, temperature coefficients (TCs) offer valuable insights into how PV parameters respond to temperature changes. While TCs are routinely included in manufacturer datasheets, their potential use as diagnostic tools for identifying and understanding failure mechanisms remains insufficiently explored. This work presents a comprehensive analysis of the relationship between temperature coefficients and PV module degradation, with a focus on enhancing failure detection and performance evaluation. Five PV module types, exposed to real outdoor conditions under Mediterranean climatic conditions for periods ranging from 4 to 30 years, were investigated through a series of inspections conducted in accordance with IEC 61215 and related standards. These included visual and thermal inspections, (I–V) curve measurements, electrical parameter assessments, and internal resistance evaluations. Furthermore, new differential ratios are introduced to improve comparative analysis. The analysis emphasizes three key datasheet-provided TCs: maximum power (<span><math><mrow><mi>T</mi><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></msub></mrow></math></span>), open-circuit voltage (<span><math><mrow><mi>T</mi><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msub></mrow></msub></mrow></math></span>), and short-circuit current (<span><math><mrow><mi>T</mi><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>s</mi><mi>c</mi></mrow></msub></mrow></msub></mrow></math></span>), while also drawing insights into derived coefficients such as maximum voltage (<span><math><mrow><mi>T</mi><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>m</mi><mi>p</mi><mi>p</mi></mrow></msub></mrow></msub></mrow></math></span>), maximum current (<span><math><mrow><mi>T</mi><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>m</mi><mi>p</mi><mi>p</mi></mrow></msub></mrow></msub></mrow></math></span>), and fill factor (<span><math><mrow><mi>T</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>F</mi><mi>F</mi></mrow></msub></mrow></math></span>). Results reveal that both optical (e.g., discoloration, delamination) and non-optical (e.g., hot spots, corrosion) failures influence TC behavior. In particular, <span><math><mrow><mi>T</mi><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></msub></mrow></math></span> shows strong sensitivity to failure occurrence and distribution, while <span><math><mrow><mi>T</mi><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msub></mrow></msub></mrow></math></span> closely correlates with observed thermal distribution. Although <span><math><mrow><mi>T</mi><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>s</mi><mi>c</mi></mrow></msub></mrow></msub></mrow></math></span> shows higher measurement uncertainty under outdoor conditions, its degradation appears linked to optical failure. The findings suggest that TCs, beyond their conventional use, can serve as practical indicators of specific degradation mechanisms, offering a complementary or alternative approach to existing failure detection or diagnostic techniques. The paper also recommends that manufacturers expand datasheet specifications to include additional temperature coefficients (TCs) to enhance PV module failure detection and enable more accurate performance comparisons. The paper also recommends that manufacturers expand datasheet specifications to include additional TCs for enhanced PV module failure detection and TCs values comparison. Future work will aim to refine this methodology through expanded datasets and more precise uncertainty quantification under varying environmental conditions.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"301 ","pages":"Article 113891"},"PeriodicalIF":6.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25006541","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Ensuring long-term performance and reliability of photovoltaic (PV) modules is essential for minimizing maintenance costs and supporting large-scale solar deployment — particularly in regions like Algeria, where solar energy plays a key role in national energy transition strategies. Among the key performance indicators, temperature coefficients (TCs) offer valuable insights into how PV parameters respond to temperature changes. While TCs are routinely included in manufacturer datasheets, their potential use as diagnostic tools for identifying and understanding failure mechanisms remains insufficiently explored. This work presents a comprehensive analysis of the relationship between temperature coefficients and PV module degradation, with a focus on enhancing failure detection and performance evaluation. Five PV module types, exposed to real outdoor conditions under Mediterranean climatic conditions for periods ranging from 4 to 30 years, were investigated through a series of inspections conducted in accordance with IEC 61215 and related standards. These included visual and thermal inspections, (I–V) curve measurements, electrical parameter assessments, and internal resistance evaluations. Furthermore, new differential ratios are introduced to improve comparative analysis. The analysis emphasizes three key datasheet-provided TCs: maximum power (TCPmax), open-circuit voltage (TCVoc), and short-circuit current (TCIsc), while also drawing insights into derived coefficients such as maximum voltage (TCVmpp), maximum current (TCImpp), and fill factor (TCFF). Results reveal that both optical (e.g., discoloration, delamination) and non-optical (e.g., hot spots, corrosion) failures influence TC behavior. In particular, TCPmax shows strong sensitivity to failure occurrence and distribution, while TCVoc closely correlates with observed thermal distribution. Although TCIsc shows higher measurement uncertainty under outdoor conditions, its degradation appears linked to optical failure. The findings suggest that TCs, beyond their conventional use, can serve as practical indicators of specific degradation mechanisms, offering a complementary or alternative approach to existing failure detection or diagnostic techniques. The paper also recommends that manufacturers expand datasheet specifications to include additional temperature coefficients (TCs) to enhance PV module failure detection and enable more accurate performance comparisons. The paper also recommends that manufacturers expand datasheet specifications to include additional TCs for enhanced PV module failure detection and TCs values comparison. Future work will aim to refine this methodology through expanded datasets and more precise uncertainty quantification under varying environmental conditions.
全面分析和洞察温度系数与PV故障之间的关系,并调查其与其他PV参数的相关性
确保光伏(PV)组件的长期性能和可靠性对于最大限度地降低维护成本和支持大规模太阳能部署至关重要,特别是在太阳能在国家能源转型战略中发挥关键作用的阿尔及利亚等地区。在关键性能指标中,温度系数(tc)为PV参数如何响应温度变化提供了有价值的见解。虽然TCs通常包含在制造商的数据表中,但它们作为识别和理解故障机制的诊断工具的潜在用途仍然没有得到充分的探索。本文对温度系数与光伏组件退化之间的关系进行了全面分析,重点是加强故障检测和性能评估。五种类型的光伏组件,在地中海气候条件下暴露于真实的室外条件下,时间从4年到30年不等,通过一系列按照IEC 61215和相关标准进行的检查进行了调查。这些包括视觉和热检查,(I-V)曲线测量,电气参数评估和内阻评估。此外,还引入了新的差分比率来改进比较分析。该分析强调了三个关键数据表提供的tc:最大功率(TCPmax),开路电压(TCVoc)和短路电流(TCIsc),同时还深入了解了最大电压(TCVmpp),最大电流(TCImpp)和填充因子(TCFF)等衍生系数。结果表明,光学(如变色、分层)和非光学(如热点、腐蚀)失效都会影响TC行为。其中TCPmax对失效的发生和分布表现出较强的敏感性,而TCVoc与观测到的热分布密切相关。尽管tciscc在室外条件下显示出较高的测量不确定度,但其退化似乎与光学失效有关。研究结果表明,除了常规用途之外,tc还可以作为具体退化机制的实际指标,为现有的故障检测或诊断技术提供补充或替代方法。本文还建议制造商扩展数据表规格,包括额外的温度系数(tc),以增强光伏模块故障检测并实现更准确的性能比较。本文还建议制造商扩展数据表规格,以包括额外的tc,以增强光伏模块故障检测和tc值比较。未来的工作将旨在通过扩展数据集和在不同环境条件下更精确的不确定性量化来完善这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信