Sat Paul , Jitendra Kumar , S.K. Maurya , Akram Ali
{"title":"Most general exact solution for charged compact star model in extended symmetric teleparallel gravity using two step-method","authors":"Sat Paul , Jitendra Kumar , S.K. Maurya , Akram Ali","doi":"10.1016/j.nuclphysb.2025.117088","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates the physical properties and stability of an isotropic compact star in <span><math><mi>F</mi><mo>(</mo><mrow><mi>Q</mi><mo>,</mo><mi>T</mi></mrow><mo>)</mo></math></span> gravity, where <span><math><mi>T</mi></math></span> denotes the trace of the energy-momentum tensor and <span><math><mi>Q</mi></math></span> represents the nonmetricity scalar. In the present study, the impact of <span><math><mi>F</mi><mo>(</mo><mrow><mi>Q</mi><mo>,</mo><mi>T</mi></mrow><mo>)</mo></math></span> gravity on the stability and structure of compact stars is investigated, considering a perfect fluid distribution and adopting the functional form <span><math><mi>F</mi><mo>(</mo><mrow><mi>Q</mi><mo>,</mo><mi>T</mi></mrow><mo>)</mo><mo>=</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>Q</mi><mo>+</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>T</mi></math></span>. The field equations are solved using the two-step method proposed by Gupta and Jasim [Astrophys. Space Sci. 283 (2003) 337], along with the Buchdahl ansatz given by <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>φ</mi></mrow></msup><mo>=</mo><mfrac><mrow><mi>ϒ</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>ϵ</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>ϒ</mi><mo>+</mo><mi>ϵ</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span>. To investigate the physical properties of the LMC X-4 compact star, a static spherically symmetric metric is employed in the interior region, while a Reissner-Nordstrom exterior metric is adopted for the exterior region. In the interior region of the proposed stellar object, we analyze the behaviour of the spacetime metric functions (<span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>φ</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>ϑ</mi></mrow></msup></math></span>), energy density (<em>ρ</em>), pressure (P), charge (q), ratio of pressure to density (Ω) and the energy conditions. The equilibrium state of the star is analysed using the Tolman-Oppenheimer-Volkoff (TOV) equation, expressed as <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>+</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>+</mo><msub><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>+</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>. To assess the stability of the configuration, we examine the adiabatic index (Γ), the causality condition, regularity conditions, the well-behaved condition and the stability against convection criterion.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1018 ","pages":"Article 117088"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325002974","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates the physical properties and stability of an isotropic compact star in gravity, where denotes the trace of the energy-momentum tensor and represents the nonmetricity scalar. In the present study, the impact of gravity on the stability and structure of compact stars is investigated, considering a perfect fluid distribution and adopting the functional form . The field equations are solved using the two-step method proposed by Gupta and Jasim [Astrophys. Space Sci. 283 (2003) 337], along with the Buchdahl ansatz given by . To investigate the physical properties of the LMC X-4 compact star, a static spherically symmetric metric is employed in the interior region, while a Reissner-Nordstrom exterior metric is adopted for the exterior region. In the interior region of the proposed stellar object, we analyze the behaviour of the spacetime metric functions ( and ), energy density (ρ), pressure (P), charge (q), ratio of pressure to density (Ω) and the energy conditions. The equilibrium state of the star is analysed using the Tolman-Oppenheimer-Volkoff (TOV) equation, expressed as . To assess the stability of the configuration, we examine the adiabatic index (Γ), the causality condition, regularity conditions, the well-behaved condition and the stability against convection criterion.
本文研究了F(Q,T)引力下各向同性致密星的物理性质和稳定性,其中T表示能量动量张量的轨迹,Q表示非度量标量。本文考虑完美流体分布,采用函数形式F(Q,T)=ξ1Q+ξ2T,研究F(Q,T)重力对致密恒星稳定性和结构的影响。采用Gupta和Jasim [Astrophys]提出的两步法求解场方程。空间科学(2003)283(2003)337],以及由eφ= y (1+ϵr2) y +ϵr2给出的布赫达尔函数。为了研究LMC X-4致密星的物理性质,在内部区域采用静态球对称度规,外部区域采用Reissner-Nordstrom外部度规。在提出的恒星物体的内部区域,我们分析了时空度量函数(eφ和eφ)、能量密度(ρ)、压力(P)、电荷(q)、压密度比(Ω)和能量条件的行为。用托尔曼-奥本海默-沃尔科夫(TOV)方程分析了恒星的平衡态,表示为FG+FH+F(Q,T)+FQ=0。为了评价构型的稳定性,我们考察了绝热指数(Γ)、因果条件、规则条件、行为良好条件和对流稳定性判据。
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.