{"title":"Literature survey on machine learning techniques for enhancing accuracy of myoelectric hand gesture recognition in real-world prosthetic hand control","authors":"Hongquan Le , Marc in Het Panhuis , Gursel Alici","doi":"10.1016/j.birob.2025.100250","DOIUrl":null,"url":null,"abstract":"<div><div>The human hand, essential for performing daily tasks and facilitating social interaction, is indispensable to everyday life. Millions worldwide experience varying levels of amputation, profoundly affecting their physical, emotional, and psychological well-being, limiting independence, and reducing quality of life. Myoelectric prosthetics, the most advanced active prosthetic hands, use surface electromyography (sEMG) signals and pattern recognition to translate user intentions into control signals. Despite these advancements, high rejection rates persist due to the non-stationarity of sEMG signals, leading to inconsistent and often frustrating user experiences. As a result, clinical and academic research has increasingly focused on improving myoelectric hand gesture recognition under real-world conditions to reduce rejection rates and enhance user acceptance of myoelectric prostheses. Given the vast and diverse range of methods applied in previous research, this survey aims to systematically highlight key studies and provide an overview of the field’s current achievements. Furthermore, research on machine learning for myoelectric hand gesture recognition has been largely influenced by unrelated fields of computer science, such as computer vision and natural language processing. However, myoelectric hand gesture recognition presents unique challenges, particularly severe and unpredictable covariate shifts in sEMG signals, which require specialized approaches. To address these challenges, we propose a new taxonomy for categorizing machine learning models based on feature extraction methods and decision boundary strategies. Additionally, this paper highlights the need for benchmark datasets that accurately reflect real-world conditions and emphasizes the importance of re-evaluating real-time performance, particularly when using long temporal contextual windows. This study concludes with research challenges and future research directions to enhance the accuracy of myoelectric hand gesture recognition using machine learning techniques.</div></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"5 3","pages":"Article 100250"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetic Intelligence and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667379725000415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The human hand, essential for performing daily tasks and facilitating social interaction, is indispensable to everyday life. Millions worldwide experience varying levels of amputation, profoundly affecting their physical, emotional, and psychological well-being, limiting independence, and reducing quality of life. Myoelectric prosthetics, the most advanced active prosthetic hands, use surface electromyography (sEMG) signals and pattern recognition to translate user intentions into control signals. Despite these advancements, high rejection rates persist due to the non-stationarity of sEMG signals, leading to inconsistent and often frustrating user experiences. As a result, clinical and academic research has increasingly focused on improving myoelectric hand gesture recognition under real-world conditions to reduce rejection rates and enhance user acceptance of myoelectric prostheses. Given the vast and diverse range of methods applied in previous research, this survey aims to systematically highlight key studies and provide an overview of the field’s current achievements. Furthermore, research on machine learning for myoelectric hand gesture recognition has been largely influenced by unrelated fields of computer science, such as computer vision and natural language processing. However, myoelectric hand gesture recognition presents unique challenges, particularly severe and unpredictable covariate shifts in sEMG signals, which require specialized approaches. To address these challenges, we propose a new taxonomy for categorizing machine learning models based on feature extraction methods and decision boundary strategies. Additionally, this paper highlights the need for benchmark datasets that accurately reflect real-world conditions and emphasizes the importance of re-evaluating real-time performance, particularly when using long temporal contextual windows. This study concludes with research challenges and future research directions to enhance the accuracy of myoelectric hand gesture recognition using machine learning techniques.