{"title":"Normalized solutions for a class of Sobolev critical Schrödinger systems","authors":"Houwang Li , Tianhao Liu , Wenming Zou","doi":"10.1016/j.jde.2025.113719","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the existence and multiplicity of normalized solutions for the following coupled Schrödinger system with Sobolev critical coupling term:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mfrac><mrow><mi>α</mi><mi>ν</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></mfrac><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>β</mi></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>v</mi><mo>+</mo><mfrac><mrow><mi>β</mi><mi>ν</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></mfrac><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>β</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>v</mi><mo>,</mo><mspace></mspace><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>></mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>ν</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></math></span>, and the exponents <span><math><mi>p</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>β</mi></math></span> satisfy<span><span><span><math><mi>α</mi><mo>></mo><mn>1</mn><mo>,</mo><mspace></mspace><mi>β</mi><mo>></mo><mn>1</mn><mo>,</mo><mspace></mspace><mspace></mspace><mi>α</mi><mo>+</mo><mi>β</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mn>2</mn><mo><</mo><mi>p</mi><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mn>2</mn><mi>N</mi><mo>/</mo><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mo>.</mo></math></span></span></span> The parameters <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>R</mi></math></span> will arise as Lagrange multipliers that are not prior given. This paper mainly presents several existence and multiplicity results under explicit conditions on <span><math><mi>a</mi><mo>,</mo><mi>b</mi></math></span> for the focusing case <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>0</mn></math></span> and attractive case <span><math><mi>ν</mi><mo>></mo><mn>0</mn></math></span>:</div><div>(1) When <span><math><mn>2</mn><mo><</mo><mi>p</mi><mo><</mo><mn>2</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>N</mi></math></span>, we prove that there exist two solutions: one is a local minimizer, which serves as a normalized ground state, and the other is of mountain-pass type, which is a normalized excited state.</div><div>(2) When <span><math><mn>2</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>N</mi><mo>≤</mo><mi>p</mi><mo><</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, we prove that there exists a mountain-pass type solution, which serves as a normalized ground state.</div><div>(3) When <span><math><mi>p</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, the existence and classification of normalized ground states are provided for and <span><math><mi>N</mi><mo>≥</mo><mn>5</mn></math></span>, alongside a non-existence result for <span><math><mi>N</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span>. These results reflect the properties of the Aubin-Talenti bubble, which attains the best Sobolev embedding constant.</div><div>Furthermore, we present a non-existence result for the defocusing case <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mn>0</mn></math></span>. We believe our methods can also address the open problem of the multiplicity of normalized solutions for Schrödinger systems with Sobolev critical growth, with potential for future development and broader applicability.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"450 ","pages":"Article 113719"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007466","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the existence and multiplicity of normalized solutions for the following coupled Schrödinger system with Sobolev critical coupling term: where , , , and the exponents satisfy The parameters will arise as Lagrange multipliers that are not prior given. This paper mainly presents several existence and multiplicity results under explicit conditions on for the focusing case and attractive case :
(1) When , we prove that there exist two solutions: one is a local minimizer, which serves as a normalized ground state, and the other is of mountain-pass type, which is a normalized excited state.
(2) When , we prove that there exists a mountain-pass type solution, which serves as a normalized ground state.
(3) When , the existence and classification of normalized ground states are provided for and , alongside a non-existence result for . These results reflect the properties of the Aubin-Talenti bubble, which attains the best Sobolev embedding constant.
Furthermore, we present a non-existence result for the defocusing case . We believe our methods can also address the open problem of the multiplicity of normalized solutions for Schrödinger systems with Sobolev critical growth, with potential for future development and broader applicability.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics