Four and six-coordinated Al in a fluorite-type structure: A key to the stabilization of Sc2O3-stabilized ZrO2

IF 3.3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Itaru Oikawa , Akihiro Fujimaki , Akihiro Ishii , Fuminori Tamazaki , Hiroshi Okamoto , Hitoshi Takamura
{"title":"Four and six-coordinated Al in a fluorite-type structure: A key to the stabilization of Sc2O3-stabilized ZrO2","authors":"Itaru Oikawa ,&nbsp;Akihiro Fujimaki ,&nbsp;Akihiro Ishii ,&nbsp;Fuminori Tamazaki ,&nbsp;Hiroshi Okamoto ,&nbsp;Hitoshi Takamura","doi":"10.1016/j.ssi.2025.116997","DOIUrl":null,"url":null,"abstract":"<div><div>Al is known as a unique element to enhance the stability of Sc<sub>2</sub>O<sub>3</sub>-stabilized ZrO<sub>2</sub> (ScSZ); however, understanding the Al state in the material is insufficient for the mechanism to be understood. In this study, the states and roles of Al in the ScSZ-based materials are elucidated by <sup>27</sup>Al NMR spectroscopy, DFT calculations, and detailed structural analysis concerning cubicity. The <sup>27</sup>Al NMR and DFT calculations reveal that Al substitutes Zr sites as 6-, 7- and 8-coordinated states in ScSZ even though the ionic radius of Al is much smaller than that of Zr. The formation of 6-coordinated Al with two oxygen vacancies in its vicinity indicates oxygen vacancies are preferentially located around the smaller cations. The local structure revealed by DFT calculations suggests that the coordination polyhedron of 7- and 8-coordinated Al is effectively 4-coordinated Al. The <sup>27</sup>Al NMR results also support this unique local structure. The results of this study show that manipulating the Al state is a key step in stabilizing Sc<sub>2</sub>O<sub>3</sub>-stabilized ZrO<sub>2</sub> and help to clarify the suppression mechanism of the degradation of conductivity.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"430 ","pages":"Article 116997"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825002164","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Al is known as a unique element to enhance the stability of Sc2O3-stabilized ZrO2 (ScSZ); however, understanding the Al state in the material is insufficient for the mechanism to be understood. In this study, the states and roles of Al in the ScSZ-based materials are elucidated by 27Al NMR spectroscopy, DFT calculations, and detailed structural analysis concerning cubicity. The 27Al NMR and DFT calculations reveal that Al substitutes Zr sites as 6-, 7- and 8-coordinated states in ScSZ even though the ionic radius of Al is much smaller than that of Zr. The formation of 6-coordinated Al with two oxygen vacancies in its vicinity indicates oxygen vacancies are preferentially located around the smaller cations. The local structure revealed by DFT calculations suggests that the coordination polyhedron of 7- and 8-coordinated Al is effectively 4-coordinated Al. The 27Al NMR results also support this unique local structure. The results of this study show that manipulating the Al state is a key step in stabilizing Sc2O3-stabilized ZrO2 and help to clarify the suppression mechanism of the degradation of conductivity.
萤石型结构中的四和六配位铝:稳定sc2o3稳定ZrO2的关键
Al被认为是增强sc2o3稳定ZrO2 (ScSZ)稳定性的独特元素;然而,仅了解材料中的Al态还不足以理解其机理。在本研究中,通过27Al核磁共振谱、DFT计算和详细的立方度结构分析,阐明了Al在scz基材料中的状态和作用。27Al核磁共振和DFT计算表明,尽管Al的离子半径远小于Zr,但在ScSZ中,Al取代了Zr的6、7和8配位态。6配位铝在其附近形成两个氧空位,表明氧空位优先位于较小的阳离子周围。DFT计算揭示的局部结构表明,7-和8-配位Al的配位多面体是有效的4-配位Al。27Al核磁共振结果也支持这种独特的局部结构。本研究结果表明,控制Al态是稳定sc2o3稳定ZrO2的关键步骤,有助于阐明电导率退化的抑制机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信