Bias characteristics of cloud diurnal variation in the FGOALS-f3-L model

IF 3.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Hongtao Yang , Guoxing Chen , Qing Bao , Bian He
{"title":"Bias characteristics of cloud diurnal variation in the FGOALS-f3-L model","authors":"Hongtao Yang ,&nbsp;Guoxing Chen ,&nbsp;Qing Bao ,&nbsp;Bian He","doi":"10.1016/j.aosl.2025.100636","DOIUrl":null,"url":null,"abstract":"<div><div>Cloud diurnal variation is crucial for regulating cloud radiative effects and atmospheric dynamics. However, it is often overlooked in the evaluation and development of climate models. Thus, this study aims to investigate the daily mean (CFR) and diurnal variation (CDV) of cloud fraction across high-, middle-, low-level, and total clouds in the FGOALS-f3-L general circulation model. The bias of total CDV is decomposed into the model biases in CFRs and CDVs of clouds at all three levels. Results indicate that the model generally underestimates low-level cloud fraction during the daytime and high-/middle-level cloud fraction at nighttime. The simulation biases of low clouds, especially their CDV biases, dominate the bias of total CDV. Compensation effects exist among the bias decompositions, where the negative contributions of underestimated daytime low-level cloud fraction are partially offset by the opposing contributions from biases in high-/middle-level clouds. Meanwhile, the bias contributions have notable land–ocean differences and region-dependent characteristics, consistent with the model biases in these variables. Additionally, the study estimates the influences of CFR and CDV biases on the bias of shortwave cloud radiative effects. It reveals that the impacts of CDV biases can reach half of those from CFR biases, highlighting the importance of accurate CDV representation in climate models.</div><div>摘要</div><div>云量日变化可以调节云辐射效应, 影响大气动力过程, 但在气候模式评估中常被忽视. 本研究评估了FGOALS-f3-L模式中高, 中, 低云及总云云量的日均值和日变化特征. 结果表明, 模式普遍低估白天低云云量和夜间中, 高云云量. 低云云量日变化误差主导总云云量日变化误差. 其中, 低云误差造成的负值贡献被中, 高云误差的正值贡献部分抵消. 误差贡献呈现显著的海陆和区域差异, 与相应云量的模式误差一致. 同时, 云量日变化误差对短波云辐射效应误差的影响可达日均云量影响的一半, 突显了在模式中准确表征云量日变化的重要性.</div></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"18 6","pages":"Article 100636"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283425000480","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud diurnal variation is crucial for regulating cloud radiative effects and atmospheric dynamics. However, it is often overlooked in the evaluation and development of climate models. Thus, this study aims to investigate the daily mean (CFR) and diurnal variation (CDV) of cloud fraction across high-, middle-, low-level, and total clouds in the FGOALS-f3-L general circulation model. The bias of total CDV is decomposed into the model biases in CFRs and CDVs of clouds at all three levels. Results indicate that the model generally underestimates low-level cloud fraction during the daytime and high-/middle-level cloud fraction at nighttime. The simulation biases of low clouds, especially their CDV biases, dominate the bias of total CDV. Compensation effects exist among the bias decompositions, where the negative contributions of underestimated daytime low-level cloud fraction are partially offset by the opposing contributions from biases in high-/middle-level clouds. Meanwhile, the bias contributions have notable land–ocean differences and region-dependent characteristics, consistent with the model biases in these variables. Additionally, the study estimates the influences of CFR and CDV biases on the bias of shortwave cloud radiative effects. It reveals that the impacts of CDV biases can reach half of those from CFR biases, highlighting the importance of accurate CDV representation in climate models.
摘要
云量日变化可以调节云辐射效应, 影响大气动力过程, 但在气候模式评估中常被忽视. 本研究评估了FGOALS-f3-L模式中高, 中, 低云及总云云量的日均值和日变化特征. 结果表明, 模式普遍低估白天低云云量和夜间中, 高云云量. 低云云量日变化误差主导总云云量日变化误差. 其中, 低云误差造成的负值贡献被中, 高云误差的正值贡献部分抵消. 误差贡献呈现显著的海陆和区域差异, 与相应云量的模式误差一致. 同时, 云量日变化误差对短波云辐射效应误差的影响可达日均云量影响的一半, 突显了在模式中准确表征云量日变化的重要性.
FGOALS-f3-L模式云日变化的偏置特征
云日变化对调节云辐射效应和大气动力学至关重要。然而,在气候模式的评估和开发中,这一点经常被忽视。因此,本研究旨在研究FGOALS-f3-L环流模式中高、中、低层和总云的云分数的日平均值(CFR)和日变化(CDV)。将总CDV的偏置分解为三层云的CFRs和CDV的模式偏置。结果表明,该模式在白天普遍低估了低层云分数,而在夜间普遍低估了高层/中层云分数。低云的模拟偏倚,特别是低云的CDV偏倚,支配着总CDV的偏倚。在偏差分解中存在补偿效应,其中低估的白天低层云分数的负贡献部分被高/中层云偏差的相反贡献所抵消。同时,偏差贡献具有显著的陆海差异和区域依赖特征,与这些变量的模型偏差一致。此外,研究估计了CFR和CDV偏差对短波云辐射效应偏差的影响。它揭示了CDV偏差的影响可以达到CFR偏差的一半,突出了气候模型中准确表达CDV的重要性。摘要云量日变化可以调节云辐射效应, 影响大气动力过程, 但在气候模式评估中常被忽视. 【中文翻译】:【中文翻译】结果表明, 模式普遍低估白天低云云量和夜间中, 高云云量. 低云云量日变化误差主导总云云量日变化误差. 其中, 低云误差造成的负值贡献被中, 高云误差的正值贡献部分抵消. 误差贡献呈现显著的海陆和区域差异, 与相应云量的模式误差一致. 同时, 云量日变化误差对短波云辐射效应误差的影响可达日均云量影响的一半, 突显了在模式中准确表征云量日变化的重要性.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信