Tingwei Gao , Jiankun Wang , Jiajia Wang , Xi Li , Zhanhao Xiao
{"title":"Inhibition of Atg13-mediated autophagy enhances the anti-osteoclastogenic effect of sirolimus by counteracting its pro-autophagic activity","authors":"Tingwei Gao , Jiankun Wang , Jiajia Wang , Xi Li , Zhanhao Xiao","doi":"10.1016/j.diff.2025.100902","DOIUrl":null,"url":null,"abstract":"<div><div>Sirolimus can inhibit osteoclastogenesis. But sirolimus-activated autophagy is a favorable factor for osteoclastogenesis. This study aimed to explore the significance of autophagy in sirolimus-regulated osteoclastogenesis. Our results confirmed that sirolimus inhibited osteoclastic differentiation (including the number and size of osteoclasts as well as the expression of osteoclastic genes) and promotes osteoclast precursor (OCP) autophagy (including LC3 conversion and autophagosome/autolysosome formation). As expected, OCP autophagy (including LC3 conversion and LC3-puncta formation) promoted by sirolimus was reversed by autophagy inactivation with 3-MA or Atg13 silencing. Importantly, compared with single intervention of sirolimus, the combination of sirolimus and 3-MA or Atg13 silencing more effectively inhibited osteoclastic differentiation and OCP proliferation. <em>In vivo</em> experiments also demonstrated that the combination of sirolimus and Atg13-silencing adeno-associated viruses (AAVs) was more effective than sirolimus alone in improving decreased bone density and damaged bone microstructure (including Micro-CT imaging results, bone tissue parameters and trabecular area), and attenuating osteoclastic activity (including the abundance of osteoclasts in trabecular bones and the production of osteoclastic markers in serum) in ovariectomized (OVX) mice. In conclusion, repressing Atg13-related autophagy can effectively enhance the function of sirolimus in inhibiting osteoclastogenesis by counteracting its pro-autophagic activity. Therefore, the combination of sirolimus and Atg13-targeting therapy is expected to enhance the efficacy of sirolimus in ameliorating osteoclastic osteoporosis.</div></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":"145 ","pages":"Article 100902"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468125000696","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sirolimus can inhibit osteoclastogenesis. But sirolimus-activated autophagy is a favorable factor for osteoclastogenesis. This study aimed to explore the significance of autophagy in sirolimus-regulated osteoclastogenesis. Our results confirmed that sirolimus inhibited osteoclastic differentiation (including the number and size of osteoclasts as well as the expression of osteoclastic genes) and promotes osteoclast precursor (OCP) autophagy (including LC3 conversion and autophagosome/autolysosome formation). As expected, OCP autophagy (including LC3 conversion and LC3-puncta formation) promoted by sirolimus was reversed by autophagy inactivation with 3-MA or Atg13 silencing. Importantly, compared with single intervention of sirolimus, the combination of sirolimus and 3-MA or Atg13 silencing more effectively inhibited osteoclastic differentiation and OCP proliferation. In vivo experiments also demonstrated that the combination of sirolimus and Atg13-silencing adeno-associated viruses (AAVs) was more effective than sirolimus alone in improving decreased bone density and damaged bone microstructure (including Micro-CT imaging results, bone tissue parameters and trabecular area), and attenuating osteoclastic activity (including the abundance of osteoclasts in trabecular bones and the production of osteoclastic markers in serum) in ovariectomized (OVX) mice. In conclusion, repressing Atg13-related autophagy can effectively enhance the function of sirolimus in inhibiting osteoclastogenesis by counteracting its pro-autophagic activity. Therefore, the combination of sirolimus and Atg13-targeting therapy is expected to enhance the efficacy of sirolimus in ameliorating osteoclastic osteoporosis.
期刊介绍:
Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal.
The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest.
The principal subject areas the journal covers are: • embryonic patterning and organogenesis
• human development and congenital malformation
• mechanisms of cell lineage commitment
• tissue homeostasis and oncogenic transformation
• establishment of cellular polarity
• stem cell differentiation
• cell reprogramming mechanisms
• stability of the differentiated state
• cell and tissue interactions in vivo and in vitro
• signal transduction pathways in development and differentiation
• carcinogenesis and cancer
• mechanisms involved in cell growth and division especially relating to cancer
• differentiation in regeneration and ageing
• therapeutic applications of differentiation processes.