Unsupervised anomaly detection in composite manufacturing using autoencoders and cluster-specific thresholding

IF 2 Q3 ENGINEERING, MANUFACTURING
Deepak Kumar, Pragathi Chan Agraharam, Sirish Namilae
{"title":"Unsupervised anomaly detection in composite manufacturing using autoencoders and cluster-specific thresholding","authors":"Deepak Kumar,&nbsp;Pragathi Chan Agraharam,&nbsp;Sirish Namilae","doi":"10.1016/j.mfglet.2025.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence (AI) offers promise for advancing composite manufacturing by enhancing process monitoring, efficiency, and quality while mitigating defects. Nevertheless, AI application for anomaly detection is constrained by limited real-world data and reliance on labeled datasets, necessitating frequent retraining. We propose a novel three-stage anomaly detection framework for composite curing. First, an autoencoder is trained on normal data to extract features. Next, K-means clustering groups similar patterns. Finally, a model combining Mahalanobis distance with an elliptic envelope quantifies deviations using cluster-specific thresholds. Evaluation on autoclave data with a Digital Image Correlation setup yielded an impressive detection accuracy of 99.69% overall.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"45 ","pages":"Pages 101-106"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846325002664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) offers promise for advancing composite manufacturing by enhancing process monitoring, efficiency, and quality while mitigating defects. Nevertheless, AI application for anomaly detection is constrained by limited real-world data and reliance on labeled datasets, necessitating frequent retraining. We propose a novel three-stage anomaly detection framework for composite curing. First, an autoencoder is trained on normal data to extract features. Next, K-means clustering groups similar patterns. Finally, a model combining Mahalanobis distance with an elliptic envelope quantifies deviations using cluster-specific thresholds. Evaluation on autoclave data with a Digital Image Correlation setup yielded an impressive detection accuracy of 99.69% overall.
基于自编码器和特定聚类阈值的复合材料制造中的无监督异常检测
人工智能(AI)通过增强过程监控、效率和质量,同时减少缺陷,为推进复合材料制造提供了希望。然而,人工智能在异常检测中的应用受到有限的真实数据和对标记数据集的依赖的限制,需要频繁的再训练。提出了一种新的复合材料固化三阶段异常检测框架。首先,对正常数据进行自编码器训练,提取特征。接下来,K-means聚类对相似的模式进行分组。最后,一个结合马氏距离和椭圆包络线的模型使用集群特定阈值量化偏差。使用数字图像相关设置对高压灭菌器数据进行评估,总体检测精度达到99.69%,令人印象深刻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信