Impact of BESS last-minutes reactions on short-term system imbalance forecasting accuracy in European energy markets

IF 5.1 3区 工程技术 Q2 ENERGY & FUELS
Samuel O. Ezennaya , Godwin C. Okwuibe , Julia Kowal
{"title":"Impact of BESS last-minutes reactions on short-term system imbalance forecasting accuracy in European energy markets","authors":"Samuel O. Ezennaya ,&nbsp;Godwin C. Okwuibe ,&nbsp;Julia Kowal","doi":"10.1016/j.egyr.2025.07.041","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing deployment of Battery Energy Storage Systems (BESS) in modern electricity markets has introduced new complexities in system imbalance (SI) forecasting, particularly due to last-minute balancing actions by Balance Responsible Parties (BRPs). Conventional forecasting models, which primarily rely on historical imbalance patterns and exogenous market features, often fail to capture the dynamic corrective responses of BESS, leading to substantial prediction inaccuracies. This study systematically evaluates the impact of key battery parameters, including maximum power capacity (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span>), depth of discharge <span><math><mrow><mo>(</mo><mi>D</mi><mi>O</mi><mi>D</mi><mo>)</mo></mrow></math></span>, and energy-to-power <span><math><mrow><mo>(</mo><mi>E</mi><mo>/</mo><mi>P</mi><mo>)</mo></mrow></math></span> ratio, on forecasting accuracy. A battery-aware autoregressive (AR) model is developed to explicitly integrate these factors, with predictive performance benchmarked against conventional models under both static and dynamic battery dispatch conditions. The analysis establishes well-defined operational stability constraints, demonstrating that forecast errors remain within considerably limits (<span><math><mrow><mtext>MAE</mtext><mo>≤</mo><mn>100</mn></mrow></math></span> MW) when <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>≈</mo><mn>416</mn></mrow></math></span> MW, <span><math><mrow><mtext>DOD</mtext><mo>≤</mo><mn>0</mn><mo>.</mo><mn>92</mn></mrow></math></span>, and the <span><math><mrow><mi>E</mi><mo>/</mo><mi>P</mi></mrow></math></span> ratio is maintained either at <span><math><mrow><mi>E</mi><mo>/</mo><mi>P</mi><mo>≤</mo><mn>4</mn><mo>.</mo><mn>64</mn></mrow></math></span> or <span><math><mrow><mi>E</mi><mo>/</mo><mi>P</mi><mo>≥</mo><mn>6</mn><mo>.</mo><mn>94</mn></mrow></math></span>. However, within the intermediate range <span><math><mrow><mn>4</mn><mo>.</mo><mn>64</mn><mo>&lt;</mo><mi>E</mi><mo>/</mo><mi>P</mi><mo>&lt;</mo><mn>6</mn><mo>.</mo><mn>94</mn></mrow></math></span>, forecast errors exceed 100 MW, introducing instability and reducing predictive reliability. Notably, when <span><math><msub><mrow><mi>P</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span> is below 416 MW, variations in <span><math><mrow><mi>E</mi><mo>/</mo><mi>P</mi></mrow></math></span> and <span><math><mrow><mi>D</mi><mi>O</mi><mi>D</mi></mrow></math></span> exhibit minimal influence on forecast accuracy concerning the 100 MW MAE threshold. These findings underscore the intricate interdependencies among BESS parameters, highlighting the destabilizing effects of high-power dispatch, extended storage durations, and deep discharge cycles beyond these defined thresholds. Comparisons against the Elia forecast and a Naïve benchmark confirm that the battery-aware model enhances forecasting accuracy, improving MAE by up to 13.39%, RMSE by 20.61%, and sign accuracy by 12.06% over the Elia baseline. These improvements demonstrate the necessity for forecasting models that explicitly integrate battery dynamics to enhance predictive stability in evolving electricity markets. While this study employs an autoregressive framework for demonstration, the methodology and insights extend to advanced machine learning and probabilistic forecasting approaches. The findings provide actionable guidance for Transmission System Operators (TSOs) and market participants, offering a structured approach for optimizing imbalance management strategies, enhancing grid stability, and improving forecasting resilience in power systems with increasing BESS deployments.</div></div>","PeriodicalId":11798,"journal":{"name":"Energy Reports","volume":"14 ","pages":"Pages 1964-1979"},"PeriodicalIF":5.1000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352484725004639","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing deployment of Battery Energy Storage Systems (BESS) in modern electricity markets has introduced new complexities in system imbalance (SI) forecasting, particularly due to last-minute balancing actions by Balance Responsible Parties (BRPs). Conventional forecasting models, which primarily rely on historical imbalance patterns and exogenous market features, often fail to capture the dynamic corrective responses of BESS, leading to substantial prediction inaccuracies. This study systematically evaluates the impact of key battery parameters, including maximum power capacity (Pmax), depth of discharge (DOD), and energy-to-power (E/P) ratio, on forecasting accuracy. A battery-aware autoregressive (AR) model is developed to explicitly integrate these factors, with predictive performance benchmarked against conventional models under both static and dynamic battery dispatch conditions. The analysis establishes well-defined operational stability constraints, demonstrating that forecast errors remain within considerably limits (MAE100 MW) when Pmax416 MW, DOD0.92, and the E/P ratio is maintained either at E/P4.64 or E/P6.94. However, within the intermediate range 4.64<E/P<6.94, forecast errors exceed 100 MW, introducing instability and reducing predictive reliability. Notably, when Pmax is below 416 MW, variations in E/P and DOD exhibit minimal influence on forecast accuracy concerning the 100 MW MAE threshold. These findings underscore the intricate interdependencies among BESS parameters, highlighting the destabilizing effects of high-power dispatch, extended storage durations, and deep discharge cycles beyond these defined thresholds. Comparisons against the Elia forecast and a Naïve benchmark confirm that the battery-aware model enhances forecasting accuracy, improving MAE by up to 13.39%, RMSE by 20.61%, and sign accuracy by 12.06% over the Elia baseline. These improvements demonstrate the necessity for forecasting models that explicitly integrate battery dynamics to enhance predictive stability in evolving electricity markets. While this study employs an autoregressive framework for demonstration, the methodology and insights extend to advanced machine learning and probabilistic forecasting approaches. The findings provide actionable guidance for Transmission System Operators (TSOs) and market participants, offering a structured approach for optimizing imbalance management strategies, enhancing grid stability, and improving forecasting resilience in power systems with increasing BESS deployments.

Abstract Image

BESS最后时刻反应对欧洲能源市场短期系统不平衡预测准确性的影响
电池储能系统(BESS)在现代电力市场的日益普及给系统不平衡(SI)预测带来了新的复杂性,特别是由于平衡责任方(brp)在最后一刻采取的平衡行动。传统的预测模型主要依赖于历史失衡模式和外生市场特征,往往无法捕捉到BESS的动态修正响应,导致预测严重不准确。本研究系统地评估了电池关键参数,包括最大功率容量(Pmax)、放电深度(DOD)和能量功率比(E/P)对预测精度的影响。开发了一个电池感知自回归(AR)模型来明确地整合这些因素,并在静态和动态电池调度条件下与传统模型进行了预测性能基准测试。分析建立了明确的运行稳定性约束,表明当Pmax≈416 MW, DOD≤0.92,E/P比保持在E/P≤4.64或E/P≥6.94时,预测误差保持在相当大的范围内(MAE≤100 MW)。然而,在中间区间4.64<E/P<;6.94内,预测误差超过100 MW,引入不稳定性,降低预测可靠性。值得注意的是,当Pmax低于416 MW时,对于100 MW MAE阈值,E/P和DOD的变化对预测精度的影响最小。这些发现强调了BESS参数之间错综复杂的相互依赖关系,突出了高功率调度、延长存储持续时间和深度放电周期超出这些定义阈值的不稳定影响。与Elia预测和Naïve基准的比较证实,电池感知模型提高了预测精度,与Elia基线相比,MAE提高了13.39%,RMSE提高了20.61%,符号准确率提高了12.06%。这些改进证明了明确整合电池动态的预测模型的必要性,以提高不断变化的电力市场的预测稳定性。虽然本研究采用自回归框架进行演示,但其方法和见解扩展到先进的机器学习和概率预测方法。研究结果为输电系统运营商(tso)和市场参与者提供了可操作的指导,提供了一种结构化的方法来优化不平衡管理策略,增强电网稳定性,并在BESS部署增加的情况下提高电力系统的预测弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Reports
Energy Reports Energy-General Energy
CiteScore
8.20
自引率
13.50%
发文量
2608
审稿时长
38 days
期刊介绍: Energy Reports is a new online multidisciplinary open access journal which focuses on publishing new research in the area of Energy with a rapid review and publication time. Energy Reports will be open to direct submissions and also to submissions from other Elsevier Energy journals, whose Editors have determined that Energy Reports would be a better fit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信