Mohammad Seyfaddini , Mojtaba Bahaaddini , Saeed Karimi Nasab , Mohammad Hossein Khosravi , Hossein Masoumi
{"title":"Failure mechanisms of block-flexural toppling: An extensive numerical study","authors":"Mohammad Seyfaddini , Mojtaba Bahaaddini , Saeed Karimi Nasab , Mohammad Hossein Khosravi , Hossein Masoumi","doi":"10.1016/j.simpat.2025.103198","DOIUrl":null,"url":null,"abstract":"<div><div>Toppling failure is a common instability in natural rock slopes. The common approaches for investigating toppling failure mechanisms are physical and analytical methods, which encounter special difficulties for the test set-up and limitation in the number of physical experiments as well as complicated governing equations in analytical models. Recent advances in numerical modeling, particularly the discrete element method (DEM), have opened new avenues for understanding the complex mechanisms behind toppling failure. In this work, the ability of numerical method in reproducing toppling mechanism was first investigated through an extensive comparative analysis with physical and analytical methods. Hence, the validated numerical models were employed to statistically examine the individual and interactive effects of different parameters on the block-flexural toppling failure mechanism using the response surface methodology (RSM). To explore the statistical significance of effective parameters, the central composite design (CCD) was employed. The analysis revealed that aspect ratio constitutes the most influential parameter governing block-flexural toppling failure, while block unit weight found to be the least significant factor. Also, it was found out that the block unit weight and the block aspect ratio can cause a decrease in the failure initiation angle. It was concluded that an increase in the joint friction angle and block tensile strength can increase the stability of slope where the joint friction angle can change the shape and location of failure surface. Finally, evaluation of interaction effects showed that the impact of block tensile strength on block-flexural failure increases with an increase in block slenderness.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"144 ","pages":"Article 103198"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25001339","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Toppling failure is a common instability in natural rock slopes. The common approaches for investigating toppling failure mechanisms are physical and analytical methods, which encounter special difficulties for the test set-up and limitation in the number of physical experiments as well as complicated governing equations in analytical models. Recent advances in numerical modeling, particularly the discrete element method (DEM), have opened new avenues for understanding the complex mechanisms behind toppling failure. In this work, the ability of numerical method in reproducing toppling mechanism was first investigated through an extensive comparative analysis with physical and analytical methods. Hence, the validated numerical models were employed to statistically examine the individual and interactive effects of different parameters on the block-flexural toppling failure mechanism using the response surface methodology (RSM). To explore the statistical significance of effective parameters, the central composite design (CCD) was employed. The analysis revealed that aspect ratio constitutes the most influential parameter governing block-flexural toppling failure, while block unit weight found to be the least significant factor. Also, it was found out that the block unit weight and the block aspect ratio can cause a decrease in the failure initiation angle. It was concluded that an increase in the joint friction angle and block tensile strength can increase the stability of slope where the joint friction angle can change the shape and location of failure surface. Finally, evaluation of interaction effects showed that the impact of block tensile strength on block-flexural failure increases with an increase in block slenderness.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.