Magnetically driven free convection of nanofluids in rectangular cavities: A FEM approach

Q1 Mathematics
Pramod S , Sujatha N , Sreekala C. K , Hanumagowda B. N , Kiran S , Jagadish V. Tawade , Manish Gupta , Barno Abdullaeva , M. Ijaz Khan
{"title":"Magnetically driven free convection of nanofluids in rectangular cavities: A FEM approach","authors":"Pramod S ,&nbsp;Sujatha N ,&nbsp;Sreekala C. K ,&nbsp;Hanumagowda B. N ,&nbsp;Kiran S ,&nbsp;Jagadish V. Tawade ,&nbsp;Manish Gupta ,&nbsp;Barno Abdullaeva ,&nbsp;M. Ijaz Khan","doi":"10.1016/j.padiff.2025.101291","DOIUrl":null,"url":null,"abstract":"<div><div>This research paper comprehensively investigates magnetohydrodynamic free convection in a ferrofluid-filled rectangular cavity. The researchers designed a rectangular cavity where the left vertical wall maintains a warmer temperature than the right, while the horizontal walls (top and bottom) are adiabatic. A uniform magnetic field is imposed horizontally along the positive <em>x-</em>axis. The main objective is to analyse the impacts of various parameters, such as Hartmann number (0 ≤ <em>Ha</em> ≤ 60), Rayleigh number (10<sup>3</sup> ≤ <em>Ra</em> ≤ 10<sup>6</sup>), and volume fraction (0 ≤ ϕ ≤ 0.04), on the heat transfer characteristics and fluid flow behavior within the enclosure. The governing equations are rigorously solved using the Galerkin finite element method. Quality plots like streamlines and isotherms and quantity plots like average Nusselt number (<em>Nu<sub>a</sub></em>) are presented to elucidate the underlying physics. The findings indicate that increasing Rayleigh numbers increases the convective flow, whereas increasing Hartmann numbers decreases the convective flow, promoting conduction as the primary mode of heat transfer. It is also notable that the inclusion of a magnetic field significantly alters the flow and temperature distributions, leading to a notable reduction in average Nusselt number. Furthermore, the incorporation of nanoparticles is found to intensify the heat transfer rates, with higher volume fractions yielding greater thermal performance. These findings offer significant implications for advancing thermal management, material processing techniques, and magnetohydrodynamic power generation, thereby providing innovative heat transfer solutions across diverse engineering applications.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101291"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This research paper comprehensively investigates magnetohydrodynamic free convection in a ferrofluid-filled rectangular cavity. The researchers designed a rectangular cavity where the left vertical wall maintains a warmer temperature than the right, while the horizontal walls (top and bottom) are adiabatic. A uniform magnetic field is imposed horizontally along the positive x-axis. The main objective is to analyse the impacts of various parameters, such as Hartmann number (0 ≤ Ha ≤ 60), Rayleigh number (103Ra ≤ 106), and volume fraction (0 ≤ ϕ ≤ 0.04), on the heat transfer characteristics and fluid flow behavior within the enclosure. The governing equations are rigorously solved using the Galerkin finite element method. Quality plots like streamlines and isotherms and quantity plots like average Nusselt number (Nua) are presented to elucidate the underlying physics. The findings indicate that increasing Rayleigh numbers increases the convective flow, whereas increasing Hartmann numbers decreases the convective flow, promoting conduction as the primary mode of heat transfer. It is also notable that the inclusion of a magnetic field significantly alters the flow and temperature distributions, leading to a notable reduction in average Nusselt number. Furthermore, the incorporation of nanoparticles is found to intensify the heat transfer rates, with higher volume fractions yielding greater thermal performance. These findings offer significant implications for advancing thermal management, material processing techniques, and magnetohydrodynamic power generation, thereby providing innovative heat transfer solutions across diverse engineering applications.
矩形空腔中纳米流体的磁驱动自由对流:有限元方法
本文对铁磁流体填充矩形腔内的磁流体力学自由对流进行了全面的研究。研究人员设计了一个矩形腔,其中左侧垂直壁保持比右侧更高的温度,而水平壁(顶部和底部)是绝热的。沿正x轴水平方向施加均匀磁场。主要目的是分析哈特曼数(0≤Ha≤60)、瑞利数(103≤Ra≤106)、体积分数(0≤φ≤0.04)等参数对箱体内传热特性和流体流动行为的影响。采用伽辽金有限元法对控制方程进行了严格求解。提出了流线和等温线等质量图和平均努塞尔数(nuusselt number, Nua)等数量图来阐明基础物理。研究结果表明,增加瑞利数会增加对流流动,而增加哈特曼数会减少对流流动,从而促进传导成为传热的主要方式。同样值得注意的是,磁场的加入显著地改变了流动和温度分布,导致平均努塞尔数显著降低。此外,纳米颗粒的掺入可以增强传热速率,体积分数越高,热性能越好。这些发现为推进热管理、材料加工技术和磁流体动力发电提供了重要意义,从而为各种工程应用提供了创新的传热解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信