Statistical inference in games: Stability of pure equilibria

IF 1 3区 经济学 Q3 ECONOMICS
Segismundo S. Izquierdo , Luis R. Izquierdo
{"title":"Statistical inference in games: Stability of pure equilibria","authors":"Segismundo S. Izquierdo ,&nbsp;Luis R. Izquierdo","doi":"10.1016/j.geb.2025.07.012","DOIUrl":null,"url":null,"abstract":"<div><div>We consider sampling best response decision protocols with statistical inference in population games. Under these protocols, a revising agent observes the actions of <em>k</em> randomly sampled players in a population, estimates from the sample a probability distribution for the state of the population (using some inference method), and chooses a best response to the estimated distribution. We formulate deterministic approximation dynamics for these protocols. If the inference method is unbiased, strict Nash equilibria are rest points, but they may not be stable. We present tests for stability of pure equilibria under these dynamics. Focusing on maximum-likelihood estimation, we can define an index that measures the strength of each strict Nash equilibrium. In <em>tacit coordination or weakest-link</em> games, the stability of equilibria under sampling best response dynamics is consistent with experimental evidence, capturing the effect of <em>strategic uncertainty</em> and its sensitivity to the number of players and to the cost/benefit ratio.</div></div>","PeriodicalId":48291,"journal":{"name":"Games and Economic Behavior","volume":"153 ","pages":"Pages 622-644"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Games and Economic Behavior","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0899825625001071","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider sampling best response decision protocols with statistical inference in population games. Under these protocols, a revising agent observes the actions of k randomly sampled players in a population, estimates from the sample a probability distribution for the state of the population (using some inference method), and chooses a best response to the estimated distribution. We formulate deterministic approximation dynamics for these protocols. If the inference method is unbiased, strict Nash equilibria are rest points, but they may not be stable. We present tests for stability of pure equilibria under these dynamics. Focusing on maximum-likelihood estimation, we can define an index that measures the strength of each strict Nash equilibrium. In tacit coordination or weakest-link games, the stability of equilibria under sampling best response dynamics is consistent with experimental evidence, capturing the effect of strategic uncertainty and its sensitivity to the number of players and to the cost/benefit ratio.
博弈中的统计推断:纯均衡的稳定性
研究了种群博弈中具有统计推理的抽样最佳对策决策协议。在这些协议下,修正智能体观察总体中随机抽样的k个参与者的行为,从样本中估计总体状态的概率分布(使用某种推理方法),并选择估计分布的最佳响应。我们为这些协议制定了确定性近似动力学。如果推理方法是无偏的,则严格纳什均衡是休息点,但它们可能不稳定。我们给出了在这些动力学下纯平衡稳定性的检验。关注最大似然估计,我们可以定义一个指标来衡量每个严格纳什均衡的强度。在隐性协调博弈或最弱环节博弈中,抽样最佳反应动力学下均衡的稳定性与实验证据一致,捕获了策略不确定性的影响及其对参与者数量和成本/收益比的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
9.10%
发文量
148
期刊介绍: Games and Economic Behavior facilitates cross-fertilization between theories and applications of game theoretic reasoning. It consistently attracts the best quality and most creative papers in interdisciplinary studies within the social, biological, and mathematical sciences. Most readers recognize it as the leading journal in game theory. Research Areas Include: • Game theory • Economics • Political science • Biology • Computer science • Mathematics • Psychology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信