Fast method and theoretical study of magnetohydrodynamic flow and heat transfer for fractional Maxwell fluids

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Yi Liu
{"title":"Fast method and theoretical study of magnetohydrodynamic flow and heat transfer for fractional Maxwell fluids","authors":"Yi Liu","doi":"10.1016/j.camwa.2025.08.022","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the magnetohydrodynamic flow and heat transfer in inclined pipes filled with fractional Maxwell fluids. The proposed model incorporates the momentum equation derived from the fractional constitutive relation and the fractional heat equation based on Fourier's law. Temporal and spatial discretization are implemented using the second-order fractional backward difference method and the finite element method, respectively. The stability of the fully discrete scheme is analyzed, ensuring numerical accuracy of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></math></span>, where <em>τ</em> is time step size, <em>h</em> is space step size and <em>r</em> is the order of accuracy of the spatial discretization. To enhance computational efficiency, a fast numerical method is introduced. A numerical example validates the effectiveness of the proposed approach and supports the theoretical framework. Additionally, simulations are conducted to examine the effects of pipe inclination and thermal radiation on velocity and temperature distributions.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"196 ","pages":"Pages 355-375"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003554","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the magnetohydrodynamic flow and heat transfer in inclined pipes filled with fractional Maxwell fluids. The proposed model incorporates the momentum equation derived from the fractional constitutive relation and the fractional heat equation based on Fourier's law. Temporal and spatial discretization are implemented using the second-order fractional backward difference method and the finite element method, respectively. The stability of the fully discrete scheme is analyzed, ensuring numerical accuracy of O(τ2+hr), where τ is time step size, h is space step size and r is the order of accuracy of the spatial discretization. To enhance computational efficiency, a fast numerical method is introduced. A numerical example validates the effectiveness of the proposed approach and supports the theoretical framework. Additionally, simulations are conducted to examine the effects of pipe inclination and thermal radiation on velocity and temperature distributions.
分数阶麦克斯韦流体磁流体动力学流动与传热的快速方法与理论研究
本文研究了含分数麦克斯韦流体的倾斜管内的磁流体力学流动和传热问题。该模型结合了由分数阶本构关系导出的动量方程和基于傅立叶定律的分数阶热方程。时间离散和空间离散分别采用二阶分数阶后向差分法和有限元法实现。分析了全离散格式的稳定性,保证了O(τ2+hr)的数值精度,其中τ为时间步长,h为空间步长,r为空间离散化精度的阶数。为了提高计算效率,引入了一种快速的数值计算方法。数值算例验证了所提方法的有效性,并支持了理论框架。此外,还进行了模拟,研究了管道倾角和热辐射对速度和温度分布的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信