Logarithmic Hochschild co/homology via formality of derived intersections

IF 0.8 2区 数学 Q2 MATHEMATICS
Márton Hablicsek , Leo Herr , Francesca Leonardi
{"title":"Logarithmic Hochschild co/homology via formality of derived intersections","authors":"Márton Hablicsek ,&nbsp;Leo Herr ,&nbsp;Francesca Leonardi","doi":"10.1016/j.jalgebra.2025.07.048","DOIUrl":null,"url":null,"abstract":"<div><div>We define log Hochschild co/homology for log schemes that behaves well for simple normal crossing pairs <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> or toroidal singularities.</div><div>We prove a Hochschild-Kostant-Rosenberg isomorphism for log smooth schemes, as well as an equivariant version for log orbifolds. We define cyclic homology and compute it in simple cases. We show that log Hochschild co/homology is invariant under log alterations.</div><div>Our main technical result in log geometry shows the tropicalization (Artin fan) of a product of log schemes <span><math><mi>X</mi><mo>×</mo><mi>Y</mi></math></span> is usually the product of the tropicalizations of <em>X</em> and <em>Y</em>. This and the machinery of <em>formality</em> of derived intersections facilitate a geometric approach to log Hochschild.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"686 ","pages":"Pages 127-175"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004703","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define log Hochschild co/homology for log schemes that behaves well for simple normal crossing pairs (X,D) or toroidal singularities.
We prove a Hochschild-Kostant-Rosenberg isomorphism for log smooth schemes, as well as an equivariant version for log orbifolds. We define cyclic homology and compute it in simple cases. We show that log Hochschild co/homology is invariant under log alterations.
Our main technical result in log geometry shows the tropicalization (Artin fan) of a product of log schemes X×Y is usually the product of the tropicalizations of X and Y. This and the machinery of formality of derived intersections facilitate a geometric approach to log Hochschild.
通过派生交点形式的对数Hochschild共/同调
我们定义了对简单法向交叉对(X,D)或环面奇点表现良好的对数格式的对数Hochschild co/同源性。我们证明了对数光滑格式的Hochschild-Kostant-Rosenberg同构,以及对数轨道的等变版本。我们定义了循环同调,并在简单情况下计算了它。我们证明了log Hochschild co/同调在对数变化下是不变的。我们在对数几何中的主要技术成果表明,对数方案的乘积X×Y的热带化(Artin fan)通常是X和y的热带化的产物。这和派生的交点的形式化机制促进了对数Hochschild的几何方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信