Fatigue measurement via a wearable on-eyelid magnetoelastic sensor

IF 40.9 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Fatigue measurement via a wearable on-eyelid magnetoelastic sensor","authors":"","doi":"10.1038/s41928-025-01419-w","DOIUrl":null,"url":null,"abstract":"An ultrathin, ultrasoft and ultrastretchable magnetoelastic on-eyelid sensor is developed to track eye movements. Decoding the eye blinking signals collected from this sensor, a one-dimensional convolutional neural network combined with an unsupervised clustering model classifies the level of cognitive fatigue with an accuracy of 96.4%.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"8 8","pages":"645-646"},"PeriodicalIF":40.9000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-025-01419-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

An ultrathin, ultrasoft and ultrastretchable magnetoelastic on-eyelid sensor is developed to track eye movements. Decoding the eye blinking signals collected from this sensor, a one-dimensional convolutional neural network combined with an unsupervised clustering model classifies the level of cognitive fatigue with an accuracy of 96.4%.

Abstract Image

Abstract Image

基于可穿戴式眼睑磁弹性传感器的疲劳测量
研制了一种超薄、超软、超可伸缩的磁弹性眼睑传感器,用于跟踪眼球运动。通过对该传感器采集到的眨眼信号进行解码,一维卷积神经网络结合无监督聚类模型对认知疲劳程度进行分类,准确率达到96.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Electronics
Nature Electronics Engineering-Electrical and Electronic Engineering
CiteScore
47.50
自引率
2.30%
发文量
159
期刊介绍: Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research. The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society. Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting. In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信