A salt-free medium facilitating electrode prelithiation towards fast-charging and high-energy lithium-ion batteries

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yangtao Ou, Bao Zhang, Renming Zhan, Shiyu Liu, Wenyu Wang, Shuibin Tu, Yang Hu, Zihe Chen, Xiangrui Duan, Xiancheng Wang, Li Wang, Yongming Sun
{"title":"A salt-free medium facilitating electrode prelithiation towards fast-charging and high-energy lithium-ion batteries","authors":"Yangtao Ou, Bao Zhang, Renming Zhan, Shiyu Liu, Wenyu Wang, Shuibin Tu, Yang Hu, Zihe Chen, Xiangrui Duan, Xiancheng Wang, Li Wang, Yongming Sun","doi":"10.1038/s41467-025-63257-w","DOIUrl":null,"url":null,"abstract":"<p>The substantial consumption of lithium ions and sluggish reaction kinetics at the anode detrimentally impact the deliverable energy and fast-charging capability of lithium-ion batteries with silicon-based anodes. The prevailing contact prelithiation method using an electrolyte medium can replenish the active lithium, but it may cause materials/electrode instability and bring barrier for lithium-ion transport. Here we explore a contact prelithiation methodology employing cyclic carbonate mediums that can enable spatially and temporally uniform prelithiation reaction. These mediums enable a delicate equilibrium between a lithium-ion diffusion and the intrinsic prelithiation reaction rate throughout the electrode depth. Not only does this prelithiation method serve the fundamental purpose of tackling lithium loss issue, but it also fosters the creation of a solid electrolyte interphase with favorable lithium-ion transport properties. By utilizing fluoroethylene carbonate as the medium for anode contact prelithiation, an Ah-level laminated Si/C||LiCoO<sub>2</sub> pouch cell shows a significant enhancement in cell-level energy density by 42.7%. Moreover, a Si/C||LiCoO<sub>2</sub> pouch cell achieves an 80.9% capacity utilization at a fast-charging rate of 10 C (6 min) and exhibits a low capacity decay rate of 0.047% per cycle. Such a prelithiation method demonstrates versatility across various cyclic carbonate mediums, electrodes, and scalability for industrial applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"57 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63257-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The substantial consumption of lithium ions and sluggish reaction kinetics at the anode detrimentally impact the deliverable energy and fast-charging capability of lithium-ion batteries with silicon-based anodes. The prevailing contact prelithiation method using an electrolyte medium can replenish the active lithium, but it may cause materials/electrode instability and bring barrier for lithium-ion transport. Here we explore a contact prelithiation methodology employing cyclic carbonate mediums that can enable spatially and temporally uniform prelithiation reaction. These mediums enable a delicate equilibrium between a lithium-ion diffusion and the intrinsic prelithiation reaction rate throughout the electrode depth. Not only does this prelithiation method serve the fundamental purpose of tackling lithium loss issue, but it also fosters the creation of a solid electrolyte interphase with favorable lithium-ion transport properties. By utilizing fluoroethylene carbonate as the medium for anode contact prelithiation, an Ah-level laminated Si/C||LiCoO2 pouch cell shows a significant enhancement in cell-level energy density by 42.7%. Moreover, a Si/C||LiCoO2 pouch cell achieves an 80.9% capacity utilization at a fast-charging rate of 10 C (6 min) and exhibits a low capacity decay rate of 0.047% per cycle. Such a prelithiation method demonstrates versatility across various cyclic carbonate mediums, electrodes, and scalability for industrial applications.

Abstract Image

一种促进电极预锂化的无盐介质,用于快速充电和高能锂离子电池
锂离子的大量消耗和负极反应动力学缓慢对硅基负极锂离子电池的可传递能量和快速充电能力产生不利影响。目前使用电解质介质的接触预锂化方法可以补充活性锂,但可能导致材料/电极不稳定,给锂离子的传输带来障碍。在这里,我们探索了一种使用循环碳酸盐岩介质的接触预岩化方法,该方法可以使预岩化反应在空间和时间上均匀。这些介质能够在整个电极深度的锂离子扩散和固有的预锂化反应速率之间实现微妙的平衡。这种预锂化方法不仅有助于解决锂损失问题的根本目的,而且还促进了具有良好锂离子传输特性的固体电解质界面的形成。采用氟碳酸乙烯作为阳极接触预锂化介质,得到了ah级Si/C||LiCoO2袋状层压电池,电池级能量密度显著提高了42.7%。此外,Si/C||LiCoO2袋状电池在10℃(6 min)的快速充电速率下,容量利用率达到80.9%,每循环的容量衰减率为0.047%。这种预锂化方法证明了各种循环碳酸盐介质、电极的通用性,以及工业应用的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信