{"title":"Catalytic refining lignin into toluene over atomically dispersed Cu/Ni dual sites","authors":"Xin Zhao, Changzhi Li, Jie Wen, Qian Qiang, Zirong Shen, Haipeng Yu, Xin Zhou, Fengxia Yue, Ruiqi Fang, Yingwei Li, Tao Zhang","doi":"10.1038/s41467-025-63286-5","DOIUrl":null,"url":null,"abstract":"<p>Lignin refining still suffers from great challenges of selective depolymerization and cleavage of stubborn C‒C linkages. Here, a robust atomically dispersed Cu/Ni-SA@HNC catalyst is fabricated for super-selective hydrogenolysis of lignin and model compounds via an unusual “preferential C<sub>α</sub>–C<sub>β</sub> bond cleavage in β-O-4 linkages” pathway, affording toluene in yield up to 75.7% from β-O-4 model compounds, and up to 33.7 ± 1.6 wt% (nine parallel experiments) from poplar lignin. The catalyst exhibits high stability, and the scale-up potential is demonstrated by the high space-time yield of toluene (33.7 g·g<sub>cat</sub><sup>−1</sup>·h<sup>−1</sup>) in continuous flow reaction of β-O-4 model compound. The origin of the extraordinary selectivity towards C<sub>α</sub>–C<sub>β</sub> bond cleavage rather than C‒O bond cleavage in β-O-4 model compounds is uncovered. This work conquers the major challenges in lignin valorization by using non-noble dual-metal single-atom catalyst, not only showcasing the application perspective of atomically dispersed catalysts in biopolymer refinery, but also providing a cost-efficient, petroleum independent solution to valuable commodity chemicals.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"17 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63286-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lignin refining still suffers from great challenges of selective depolymerization and cleavage of stubborn C‒C linkages. Here, a robust atomically dispersed Cu/Ni-SA@HNC catalyst is fabricated for super-selective hydrogenolysis of lignin and model compounds via an unusual “preferential Cα–Cβ bond cleavage in β-O-4 linkages” pathway, affording toluene in yield up to 75.7% from β-O-4 model compounds, and up to 33.7 ± 1.6 wt% (nine parallel experiments) from poplar lignin. The catalyst exhibits high stability, and the scale-up potential is demonstrated by the high space-time yield of toluene (33.7 g·gcat−1·h−1) in continuous flow reaction of β-O-4 model compound. The origin of the extraordinary selectivity towards Cα–Cβ bond cleavage rather than C‒O bond cleavage in β-O-4 model compounds is uncovered. This work conquers the major challenges in lignin valorization by using non-noble dual-metal single-atom catalyst, not only showcasing the application perspective of atomically dispersed catalysts in biopolymer refinery, but also providing a cost-efficient, petroleum independent solution to valuable commodity chemicals.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.