{"title":"Fe isotope decoding of fluid-absent versus fluid-present melting of deeply subducted continental crust","authors":"Er-Lin Zhu, Qiong-Xia Xia, Yi-Xiang Chen, Ren-Xu Chen, Hao-Hong Shu, Zhao-Ya Li, Yong-Fei Zheng","doi":"10.1130/g52997.1","DOIUrl":null,"url":null,"abstract":"Fluid-present melting and fluid-absent melting are two primary mechanisms for the chemical differentiation of continental crust. However, it is still challenging to decode these processes with conventional geochemical methods. In this study, we present systematic Fe isotope data of anatectic migmatites and gneisses from the Dabie orogen, China, which were formed by different mechanisms of crustal anatexis. Fluid-present melting of biotite generates migmatites with restricted Fe3+/ΣFe (0.31−0.44) and homogeneous δ56Fe values (0.06‰−0.17‰). In contrast, fluid-absent melting of phengite produces migmatites and migmatitic gneisses with dramatic Fe3+/ΣFe (0.26−0.94) and δ56Fe (0.04‰−0.61‰) variations. Quantitative modeling of Fe distribution during partial melting reveals that Fe isotope fractionation is governed by source mineral assemblages under varying melting regimes. During fluid-absent melting, the reactant phengite has much higher Fe3+/ΣFe and δ56Fe values than the peritectic biotite, resulting in high and heterogeneous δ56Fe values in the complementary melt. In contrast, during fluid-present melting, the reactant biotite and peritectic amphibole have similarly low Fe3+/ΣFe and δ56Fe values, leading to low and homogeneous δ56Fe values in the complementary melt. This establishes Fe isotopes as a novel tracer for crustal anatexis, critical for understanding continental reworking and intracrustal differentiation.","PeriodicalId":12642,"journal":{"name":"Geology","volume":"27 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/g52997.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fluid-present melting and fluid-absent melting are two primary mechanisms for the chemical differentiation of continental crust. However, it is still challenging to decode these processes with conventional geochemical methods. In this study, we present systematic Fe isotope data of anatectic migmatites and gneisses from the Dabie orogen, China, which were formed by different mechanisms of crustal anatexis. Fluid-present melting of biotite generates migmatites with restricted Fe3+/ΣFe (0.31−0.44) and homogeneous δ56Fe values (0.06‰−0.17‰). In contrast, fluid-absent melting of phengite produces migmatites and migmatitic gneisses with dramatic Fe3+/ΣFe (0.26−0.94) and δ56Fe (0.04‰−0.61‰) variations. Quantitative modeling of Fe distribution during partial melting reveals that Fe isotope fractionation is governed by source mineral assemblages under varying melting regimes. During fluid-absent melting, the reactant phengite has much higher Fe3+/ΣFe and δ56Fe values than the peritectic biotite, resulting in high and heterogeneous δ56Fe values in the complementary melt. In contrast, during fluid-present melting, the reactant biotite and peritectic amphibole have similarly low Fe3+/ΣFe and δ56Fe values, leading to low and homogeneous δ56Fe values in the complementary melt. This establishes Fe isotopes as a novel tracer for crustal anatexis, critical for understanding continental reworking and intracrustal differentiation.
期刊介绍:
Published since 1973, Geology features rapid publication of about 23 refereed short (four-page) papers each month. Articles cover all earth-science disciplines and include new investigations and provocative topics. Professional geologists and university-level students in the earth sciences use this widely read journal to keep up with scientific research trends. The online forum section facilitates author-reader dialog. Includes color and occasional large-format illustrations on oversized loose inserts.