T. J. Zega, T. J. McCoy, S. S. Russell, L. P. Keller, Z. Gainsforth, S. A. Singerling, V. R. Manga, C. Harrison, G. Libourel, B. S. Prince, K. Thomas-Keprta, A. King, M. Portail, V. Guigoz, V. Tu, L. Le, M. Thompson, M. C. Benner, N. A. Kerrison, J. J. Barnes, I. Ong, P. Haenecour, L. Chaves, L. Smith, M. Kontogiannis, N. Vega Santiago, D. Hill, Z. Zeszut, K. Domanik, Y.-J. Chang, C. M. Corrigan, S. Ray, L. R. Wardell, T. Gooding, T. R. Rose, H. C. Bates, P. F. Schofield, N. V. Almeida, T. Salge, J. Najorka, L. B. Seifert, N. Lunning, K. Righter, A. N. Nguyen, F. E. Brenker, S. A. Eckley, J. P. Dworkin, R. H. Jones, S. A. Sandford, M. A. Marcus, H. A. Bechtel, G. Dominguez, H. Yurimoto, N. Kawasaki, K. Bajo, N. Sakamoto, P.-M. Zanetta, S. Tachibana, H. Busemann, V. E. Hamilton, I. A. Franchi, M. Grady, R. C. Greenwood, K. Tait, N. Timms, P. Bland, F. Jourdan, S. M. Reddy, W. Rickard, D. Saxey, L. Vincze, H. C. Connolly Jr., D. S. Lauretta
{"title":"Mineralogical evidence for hydrothermal alteration of Bennu samples","authors":"T. J. Zega, T. J. McCoy, S. S. Russell, L. P. Keller, Z. Gainsforth, S. A. Singerling, V. R. Manga, C. Harrison, G. Libourel, B. S. Prince, K. Thomas-Keprta, A. King, M. Portail, V. Guigoz, V. Tu, L. Le, M. Thompson, M. C. Benner, N. A. Kerrison, J. J. Barnes, I. Ong, P. Haenecour, L. Chaves, L. Smith, M. Kontogiannis, N. Vega Santiago, D. Hill, Z. Zeszut, K. Domanik, Y.-J. Chang, C. M. Corrigan, S. Ray, L. R. Wardell, T. Gooding, T. R. Rose, H. C. Bates, P. F. Schofield, N. V. Almeida, T. Salge, J. Najorka, L. B. Seifert, N. Lunning, K. Righter, A. N. Nguyen, F. E. Brenker, S. A. Eckley, J. P. Dworkin, R. H. Jones, S. A. Sandford, M. A. Marcus, H. A. Bechtel, G. Dominguez, H. Yurimoto, N. Kawasaki, K. Bajo, N. Sakamoto, P.-M. Zanetta, S. Tachibana, H. Busemann, V. E. Hamilton, I. A. Franchi, M. Grady, R. C. Greenwood, K. Tait, N. Timms, P. Bland, F. Jourdan, S. M. Reddy, W. Rickard, D. Saxey, L. Vincze, H. C. Connolly Jr., D. S. Lauretta","doi":"10.1038/s41561-025-01741-0","DOIUrl":null,"url":null,"abstract":"Samples of asteroid (101955) Bennu delivered by the OSIRIS-REx mission offer the opportunity to study pristine planetary materials unchanged by exposure to the terrestrial environment. Here we use a combination of X-ray diffraction and various electron microscopy techniques to explore the detailed mineralogy of Bennu samples and determine the alteration history of the planetesimal protolith from which they originated. The samples consist largely of hydrated sheet-silicate minerals, namely nanoscale serpentine and saponite of varied grain size, which are decorated with micro- to nanoscale Fe-sulfides, magnetite and carbonates. We observe sheet silicates parallel and normal to sulfide surfaces and as inclusions in sulfides; sulfur-rich veins transecting the sheet-silicate matrix; zoned carbonates and phosphates and sulfide and magnetite grains exhibiting embayment. The mineralogical evidence indicates alteration of accreted minerals by a fluid that evolved with time, leading to etching, dissolution and reprecipitation. Sulfide compositions indicate alteration at ~25 °C, similar to conditions inferred for asteroid (162173) Ryugu and Ivuna-type (CI) chondrite meteorites. The fluid probably evolved from neutral to alkaline, culminating with the precipitation of highly soluble salts. We conclude that Bennu’s protolith comprised mainly nanometre to micrometre silicates, with fewer chondrules and calcium–aluminium-rich inclusions than those of most chondrite groups. Samples returned from asteroid Bennu largely comprise hydrated sheet silicates with sulfides, magnetite and carbonate that indicate alteration by a fluid that evolved from neutral to alkaline, according to a micro- and nanoscale mineralogical study.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"18 9","pages":"832-839"},"PeriodicalIF":16.1000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41561-025-01741-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-025-01741-0","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Samples of asteroid (101955) Bennu delivered by the OSIRIS-REx mission offer the opportunity to study pristine planetary materials unchanged by exposure to the terrestrial environment. Here we use a combination of X-ray diffraction and various electron microscopy techniques to explore the detailed mineralogy of Bennu samples and determine the alteration history of the planetesimal protolith from which they originated. The samples consist largely of hydrated sheet-silicate minerals, namely nanoscale serpentine and saponite of varied grain size, which are decorated with micro- to nanoscale Fe-sulfides, magnetite and carbonates. We observe sheet silicates parallel and normal to sulfide surfaces and as inclusions in sulfides; sulfur-rich veins transecting the sheet-silicate matrix; zoned carbonates and phosphates and sulfide and magnetite grains exhibiting embayment. The mineralogical evidence indicates alteration of accreted minerals by a fluid that evolved with time, leading to etching, dissolution and reprecipitation. Sulfide compositions indicate alteration at ~25 °C, similar to conditions inferred for asteroid (162173) Ryugu and Ivuna-type (CI) chondrite meteorites. The fluid probably evolved from neutral to alkaline, culminating with the precipitation of highly soluble salts. We conclude that Bennu’s protolith comprised mainly nanometre to micrometre silicates, with fewer chondrules and calcium–aluminium-rich inclusions than those of most chondrite groups. Samples returned from asteroid Bennu largely comprise hydrated sheet silicates with sulfides, magnetite and carbonate that indicate alteration by a fluid that evolved from neutral to alkaline, according to a micro- and nanoscale mineralogical study.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.