{"title":"Control of immune response in an iPSC-based allogeneic cell therapy clinical trial for Parkinson’s disease","authors":"Asuka Morizane, Emi Yamasaki, Takero Shindo, Takayuki Anazawa, Nobukatsu Sawamoto, Atsushi Shima, Hodaka Yamakado, Etsuro Nakanishi, Masanori Sawamura, Yosuke Taruno, Daisuke Doi, Tetsuhiro Kikuchi, Yuri Kawasaki, Megumu K. Saito, Takayuki Kikuchi, Yoshiki Arakawa, Susumu Miyamoto, Yuji Nakamoto, Ryosuke Takahashi, Jun Takahashi","doi":"10.1016/j.stem.2025.07.012","DOIUrl":null,"url":null,"abstract":"Because the central nervous system (CNS) is an immune-privileged organ, it requires different immunosuppression strategies for cell therapies using induced pluripotent stem cells (iPSCs) compared with ones for organ transplantations. We recently conducted the first in-human clinical trial of a cell therapy for Parkinson’s disease using allogeneic iPSCs (jRCT number: jRCT2090220384). All patients were transplanted with dopaminergic neural progenitors differentiated from iPSCs (iPSC-DANs), which had homozygous human leukocyte antigen (HLA) haplotypes, through immunosuppression with tacrolimus alone. No clinically significant immune reaction was observed in this study, regardless of HLA compatibility. However, a highly sensitive mixed lymphocyte reaction using iPSC-derived dendritic cells as a stimulator demonstrated the activation of lymphocytes from HLA-mismatch-grafted recipients. This finding suggests that the low expression of HLA in iPSC-DANs contributes to successful engraftment in the immune-privileged CNS. These results indicate that only moderate immunosuppressive treatment may be required for stem cell transplantation to the CNS.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"110 1","pages":""},"PeriodicalIF":20.4000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2025.07.012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Because the central nervous system (CNS) is an immune-privileged organ, it requires different immunosuppression strategies for cell therapies using induced pluripotent stem cells (iPSCs) compared with ones for organ transplantations. We recently conducted the first in-human clinical trial of a cell therapy for Parkinson’s disease using allogeneic iPSCs (jRCT number: jRCT2090220384). All patients were transplanted with dopaminergic neural progenitors differentiated from iPSCs (iPSC-DANs), which had homozygous human leukocyte antigen (HLA) haplotypes, through immunosuppression with tacrolimus alone. No clinically significant immune reaction was observed in this study, regardless of HLA compatibility. However, a highly sensitive mixed lymphocyte reaction using iPSC-derived dendritic cells as a stimulator demonstrated the activation of lymphocytes from HLA-mismatch-grafted recipients. This finding suggests that the low expression of HLA in iPSC-DANs contributes to successful engraftment in the immune-privileged CNS. These results indicate that only moderate immunosuppressive treatment may be required for stem cell transplantation to the CNS.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.