A new (2+1)-dimensional like-Harry-Dym equation with derivation and soliton solutions

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Gangwei Wang , Zixuan Tan , Xin-Yi Gao , Jian-Guo Liu
{"title":"A new (2+1)-dimensional like-Harry-Dym equation with derivation and soliton solutions","authors":"Gangwei Wang ,&nbsp;Zixuan Tan ,&nbsp;Xin-Yi Gao ,&nbsp;Jian-Guo Liu","doi":"10.1016/j.aml.2025.109720","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, based on the two-dimensional zero-curvature condition, we derived a new (<span><math><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></math></span>)-dimensional nonlinear integrable system, which was subsequently transformed into a (<span><math><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></math></span>)-dimensional Harry-Dym equation. We then established a connection between the corresponding matrix Lax pair and a like KP equation, and obtained 2-soliton solutions via the Darboux transformation. The soliton profiles exhibit distinct knot-like features that highlight the intricate structure of the solutions. Finally, two conservation laws are presented for new equations.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109720"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002708","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, based on the two-dimensional zero-curvature condition, we derived a new (2+1)-dimensional nonlinear integrable system, which was subsequently transformed into a (2+1)-dimensional Harry-Dym equation. We then established a connection between the corresponding matrix Lax pair and a like KP equation, and obtained 2-soliton solutions via the Darboux transformation. The soliton profiles exhibit distinct knot-like features that highlight the intricate structure of the solutions. Finally, two conservation laws are presented for new equations.
一个新的(2+1)维like-Harry-Dym方程及其导数和孤子解
本文基于二维零曲率条件,导出了一个新的(2+1)维非线性可积系统,并将其转化为(2+1)维Harry-Dym方程。然后在相应的矩阵Lax对和类似KP方程之间建立了联系,通过Darboux变换得到了2-孤子解。孤子的轮廓显示出明显的结状特征,突出了解的复杂结构。最后,给出了新方程的两个守恒定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信