Universal quantum gate set for Gottesman–Kitaev–Preskill logical qubits

IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
V. G. Matsos, C. H. Valahu, M. J. Millican, T. Navickas, X. C. Kolesnikow, M. J. Biercuk, T. R. Tan
{"title":"Universal quantum gate set for Gottesman–Kitaev–Preskill logical qubits","authors":"V. G. Matsos, C. H. Valahu, M. J. Millican, T. Navickas, X. C. Kolesnikow, M. J. Biercuk, T. R. Tan","doi":"10.1038/s41567-025-03002-8","DOIUrl":null,"url":null,"abstract":"<p>Conventional approaches towards creating a large-scale, fault-tolerant quantum computer require an error correction scheme that uses multiple physical qubits to encode one logical qubit of protected quantum information. A key limiting factor in realizing error-corrected quantum information processing is the large ratio of physical-to-logical qubits required by many error correction codes, outstripping the size of near-term devices. The Gottesman–Kitaev–Preskill (GKP) code offers hardware efficiency at the cost of increased encoding complexity by encoding a logical qubit into a single quantum harmonic oscillator. Building on earlier demonstrations of GKP-encoded operations, we realize an entangling gate on GKP logical qubits. Our experiments use an optimal control strategy that deterministically implements a universal set of energy-preserving logical gates on finite-energy GKP states encoded in the mechanical motions of a trapped ion. We also directly generate a GKP Bell state starting from vacuum. Our approach is compatible with existing hardware architectures, demonstrating the potential for optimal control techniques with advanced encoding schemes to accelerate the path towards large-scale fault-tolerant quantum information processing.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"416 1","pages":""},"PeriodicalIF":18.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-03002-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional approaches towards creating a large-scale, fault-tolerant quantum computer require an error correction scheme that uses multiple physical qubits to encode one logical qubit of protected quantum information. A key limiting factor in realizing error-corrected quantum information processing is the large ratio of physical-to-logical qubits required by many error correction codes, outstripping the size of near-term devices. The Gottesman–Kitaev–Preskill (GKP) code offers hardware efficiency at the cost of increased encoding complexity by encoding a logical qubit into a single quantum harmonic oscillator. Building on earlier demonstrations of GKP-encoded operations, we realize an entangling gate on GKP logical qubits. Our experiments use an optimal control strategy that deterministically implements a universal set of energy-preserving logical gates on finite-energy GKP states encoded in the mechanical motions of a trapped ion. We also directly generate a GKP Bell state starting from vacuum. Our approach is compatible with existing hardware architectures, demonstrating the potential for optimal control techniques with advanced encoding schemes to accelerate the path towards large-scale fault-tolerant quantum information processing.

Abstract Image

为Gottesman-Kitaev-Preskill逻辑量子比特设置的通用量子门
创建大规模容错量子计算机的传统方法需要一种纠错方案,该方案使用多个物理量子位来编码一个受保护量子信息的逻辑量子位。实现纠错量子信息处理的一个关键限制因素是许多纠错码所需的物理与逻辑量子比特的大比例,超过了近期设备的尺寸。Gottesman-Kitaev-Preskill (GKP)编码通过将逻辑量子位元编码到单个量子谐振子中,以增加编码复杂性为代价提供了硬件效率。在早期GKP编码操作演示的基础上,我们实现了GKP逻辑量子比特上的纠缠门。我们的实验使用了一种最优控制策略,该策略确定性地在捕获离子的机械运动中编码的有限能量GKP状态上实现了一组通用的能量守恒逻辑门。我们也直接从真空开始生成GKP贝尔态。我们的方法与现有的硬件架构兼容,展示了具有先进编码方案的最优控制技术的潜力,以加速大规模容错量子信息处理的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信