{"title":"Nitric oxide releasing graphene for next-generation therapeutics","authors":"Tanveer A. Tabish , Craig A. Lygate","doi":"10.1016/j.addr.2025.115676","DOIUrl":null,"url":null,"abstract":"<div><div>Nitric oxide (NO) is a powerful signalling molecule and plays a central role in numerous physiological processes, most notably, in the cardiovascular, immune and central nervous systems. While organic nitrates, exemplified by nitroglycerin, have been used for over a century to deliver therapeutic NO, the search for novel drugs capable of selectively increasing NO bioavailability has continued unabated. Delivery of NO is hindered by its gaseous nature, extreme reactivity, short half-life and potential for systemic toxicity. To address these challenges, controlled NO delivery systems are highly desirable, offering precise release at the site of action over defined periods. Recent advances have focused on nanoparticles for injectable or implantable use, enabling sustained, targeted NO release while degrading safely. Among these, graphene nanostructures have emerged as efficient NO carriers, since they can be specifically designed to deliver NO gas or donor compounds due to their tunable surface chemistry, easy chemical modification and good biocompatibility. In this review, we discuss the latest developments in NO-releasing graphene formulations, alongside key applications in cardiovascular diseases, antimicrobial therapy and cancer treatment.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"226 ","pages":"Article 115676"},"PeriodicalIF":17.6000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced drug delivery reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169409X25001619","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitric oxide (NO) is a powerful signalling molecule and plays a central role in numerous physiological processes, most notably, in the cardiovascular, immune and central nervous systems. While organic nitrates, exemplified by nitroglycerin, have been used for over a century to deliver therapeutic NO, the search for novel drugs capable of selectively increasing NO bioavailability has continued unabated. Delivery of NO is hindered by its gaseous nature, extreme reactivity, short half-life and potential for systemic toxicity. To address these challenges, controlled NO delivery systems are highly desirable, offering precise release at the site of action over defined periods. Recent advances have focused on nanoparticles for injectable or implantable use, enabling sustained, targeted NO release while degrading safely. Among these, graphene nanostructures have emerged as efficient NO carriers, since they can be specifically designed to deliver NO gas or donor compounds due to their tunable surface chemistry, easy chemical modification and good biocompatibility. In this review, we discuss the latest developments in NO-releasing graphene formulations, alongside key applications in cardiovascular diseases, antimicrobial therapy and cancer treatment.
期刊介绍:
The aim of the Journal is to provide a forum for the critical analysis of advanced drug and gene delivery systems and their applications in human and veterinary medicine. The Journal has a broad scope, covering the key issues for effective drug and gene delivery, from administration to site-specific delivery.
In general, the Journal publishes review articles in a Theme Issue format. Each Theme Issue provides a comprehensive and critical examination of current and emerging research on the design and development of advanced drug and gene delivery systems and their application to experimental and clinical therapeutics. The goal is to illustrate the pivotal role of a multidisciplinary approach to modern drug delivery, encompassing the application of sound biological and physicochemical principles to the engineering of drug delivery systems to meet the therapeutic need at hand. Importantly the Editorial Team of ADDR asks that the authors effectively window the extensive volume of literature, pick the important contributions and explain their importance, produce a forward looking identification of the challenges facing the field and produce a Conclusions section with expert recommendations to address the issues.