Trevor W. Cambron, Joshua B. Fisher, Bruce A. Hungate, Benjamin D. Stocker, Trevor Keenan, Iain Colin Prentice, César Terrer
{"title":"Plant nutrient acquisition under elevated CO2 and implications for the land carbon sink","authors":"Trevor W. Cambron, Joshua B. Fisher, Bruce A. Hungate, Benjamin D. Stocker, Trevor Keenan, Iain Colin Prentice, César Terrer","doi":"10.1038/s41558-025-02386-y","DOIUrl":null,"url":null,"abstract":"Terrestrial ecosystems currently sequester around one-third of the anthropogenic carbon emitted each year, slowing the pace of climate change. However, the future of this sink under rising atmospheric CO2 concentrations remains uncertain, in part due to the impact that nutrient limitation may have on plant biomass. Here we review plant nutrient acquisition strategies and evidence of the enhanced utilization of these strategies under experimental and real-world elevated CO2. Many of the strategies that are key to alleviating nutrient limitation under elevated CO2 are not well represented in current Earth system models, and a simple data-driven analysis implies that models that do not account for nutrient acquisition strategies could underestimate the land sink. Elevated atmospheric CO2 has stimulated plant growth, yet the future land carbon sink may be constrained in part by nutrient availability. Here the authors review plant nutrient acquisition strategies and the need for better representation in models to improve predictions of land carbon uptake.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 9","pages":"935-946"},"PeriodicalIF":27.1000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-025-02386-y","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Terrestrial ecosystems currently sequester around one-third of the anthropogenic carbon emitted each year, slowing the pace of climate change. However, the future of this sink under rising atmospheric CO2 concentrations remains uncertain, in part due to the impact that nutrient limitation may have on plant biomass. Here we review plant nutrient acquisition strategies and evidence of the enhanced utilization of these strategies under experimental and real-world elevated CO2. Many of the strategies that are key to alleviating nutrient limitation under elevated CO2 are not well represented in current Earth system models, and a simple data-driven analysis implies that models that do not account for nutrient acquisition strategies could underestimate the land sink. Elevated atmospheric CO2 has stimulated plant growth, yet the future land carbon sink may be constrained in part by nutrient availability. Here the authors review plant nutrient acquisition strategies and the need for better representation in models to improve predictions of land carbon uptake.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.