sGs UnMix: a web application for spatial prediction and mixture modeling with a case study on volcanic soil CO2 fluxes

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Giulio Bini, Giancarlo Tamburello, Stefano Cacciaguerra, Paolo Perfetti
{"title":"sGs UnMix: a web application for spatial prediction and mixture modeling with a case study on volcanic soil CO2 fluxes","authors":"Giulio Bini,&nbsp;Giancarlo Tamburello,&nbsp;Stefano Cacciaguerra,&nbsp;Paolo Perfetti","doi":"10.1016/j.envsoft.2025.106652","DOIUrl":null,"url":null,"abstract":"<div><div>Spatial data analysis and prediction are fundamental in geoscience for mapping continuous variables and supporting decision-making. However, traditional geostatistical tools often require programming skills or involve manual, subjective steps. Here, we developed sGs UnMix, an interactive web application that simplifies spatial prediction workflows and reduces subjectivity in statistical analysis, making it accessible to the entire geoscience community. sGs UnMix (available online at <span><span>https://apps.bo.ingv.it/sgs-unmix</span><svg><path></path></svg></span>) is built with the shiny package for R and is organized into four main panels, which allow data loading and coordinate projection, data separation through mixture modeling, variogram modeling, and spatial prediction using sequential Gaussian simulation (sGs). Automated variogram fitting and mixture modeling reduce user bias, while dynamically updated heat maps enable real-time visualization of spatial patterns. sGs UnMix provides not only a standardized approach for estimating volcanic volatile fluxes (e.g., soil CO<sub>2</sub> emissions) but also applications in ore deposit mapping, hydrocarbon exploration, environmental monitoring, and climatology. Compared to existing geostatistical tools, it offers automation, interactivity, and a platform-independent, standalone web-based solution for geoscientists.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"193 ","pages":"Article 106652"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225003366","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial data analysis and prediction are fundamental in geoscience for mapping continuous variables and supporting decision-making. However, traditional geostatistical tools often require programming skills or involve manual, subjective steps. Here, we developed sGs UnMix, an interactive web application that simplifies spatial prediction workflows and reduces subjectivity in statistical analysis, making it accessible to the entire geoscience community. sGs UnMix (available online at https://apps.bo.ingv.it/sgs-unmix) is built with the shiny package for R and is organized into four main panels, which allow data loading and coordinate projection, data separation through mixture modeling, variogram modeling, and spatial prediction using sequential Gaussian simulation (sGs). Automated variogram fitting and mixture modeling reduce user bias, while dynamically updated heat maps enable real-time visualization of spatial patterns. sGs UnMix provides not only a standardized approach for estimating volcanic volatile fluxes (e.g., soil CO2 emissions) but also applications in ore deposit mapping, hydrocarbon exploration, environmental monitoring, and climatology. Compared to existing geostatistical tools, it offers automation, interactivity, and a platform-independent, standalone web-based solution for geoscientists.
sGs UnMix:用于空间预测和混合建模的web应用程序,并以火山土壤CO2通量为例进行了研究
空间数据分析和预测是地球科学中绘制连续变量和支持决策的基础。然而,传统的地质统计工具通常需要编程技能或涉及手动的主观步骤。在这里,我们开发了sGs UnMix,这是一个交互式web应用程序,简化了空间预测工作流程,减少了统计分析中的主观性,使整个地球科学社区都可以访问它。sGs UnMix(可在线访问https://apps.bo.ingv.it/sgs-unmix)使用R的闪亮软件包构建,分为四个主要面板,允许数据加载和坐标投影,通过混合建模进行数据分离,变异函数建模和使用顺序高斯模拟(sGs)进行空间预测。自动变异函数拟合和混合建模减少了用户偏见,而动态更新的热图实现了空间模式的实时可视化。sGs UnMix不仅提供了估算火山挥发性通量(例如土壤二氧化碳排放量)的标准化方法,而且还应用于矿床测绘、碳氢化合物勘探、环境监测和气候学。与现有的地质统计工具相比,它为地球科学家提供了自动化、交互性和独立于平台的基于web的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信