{"title":"Tracing terahertz plasmon polaritons with a tunable-by-design dispersion in topological insulator metaelements","authors":"Leonardo Viti, Chiara Schiattarella, Lucia Sichert, Zhengtianye Wang, Stephanie Law, Oleg Mitrofanov, Miriam S. Vitiello","doi":"10.1038/s41377-025-01884-0","DOIUrl":null,"url":null,"abstract":"<p>Collective oscillations of massless charge carriers in two-dimensional materials—Dirac plasmon polaritons (DPPs)—are of paramount importance for engineering nanophotonic devices with tunable optical response. However, tailoring the optical properties of DPPs in a nanomaterial is a very challenging task, particularly at terahertz (THz) frequencies, where the DPP momentum is more than one order of magnitude larger than that of the free-space photons, and DDP attenuation is high. Here, we conceive and demonstrate a strategy to tune the DPP dispersion in topological insulator metamaterials. We engineer laterally coupled linear metaelements, fabricated from epitaxial Bi<sub>2</sub>Se<sub>3,</sub> with selected coupling distances with the purpose to tune their wavevector, by geometry. We launch and directly map the propagation of DPPs confined within coupled meta-atoms via phase-sensitive scattering-type scanning near-field nanoscopy. We demonstrate that the DPP wavelength can be tuned by varying the metaelements coupling distance, resulting in up to a 20% increase of the polariton wavevector Re(k<sub>p</sub>) in dimers and triplets with a 1 μm spacing, with reduced losses and a >50% increase of the polariton attenuation length.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"35 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01884-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Collective oscillations of massless charge carriers in two-dimensional materials—Dirac plasmon polaritons (DPPs)—are of paramount importance for engineering nanophotonic devices with tunable optical response. However, tailoring the optical properties of DPPs in a nanomaterial is a very challenging task, particularly at terahertz (THz) frequencies, where the DPP momentum is more than one order of magnitude larger than that of the free-space photons, and DDP attenuation is high. Here, we conceive and demonstrate a strategy to tune the DPP dispersion in topological insulator metamaterials. We engineer laterally coupled linear metaelements, fabricated from epitaxial Bi2Se3, with selected coupling distances with the purpose to tune their wavevector, by geometry. We launch and directly map the propagation of DPPs confined within coupled meta-atoms via phase-sensitive scattering-type scanning near-field nanoscopy. We demonstrate that the DPP wavelength can be tuned by varying the metaelements coupling distance, resulting in up to a 20% increase of the polariton wavevector Re(kp) in dimers and triplets with a 1 μm spacing, with reduced losses and a >50% increase of the polariton attenuation length.