Mengxin Pan, Shineng Hu, Benjamin F. Zaitchik, William K. Pan
{"title":"Contrasting historical trends of atmospheric rivers in the Northern Hemisphere","authors":"Mengxin Pan, Shineng Hu, Benjamin F. Zaitchik, William K. Pan","doi":"10.1038/s41612-025-01191-w","DOIUrl":null,"url":null,"abstract":"<p>Previous modeling studies have indicated that Atmospheric rivers (ARs) will become more frequent in the warming climate. However, whether we have experienced more ARs during historical period is less studied. Here, we show that winter AR frequency has significantly increased over the mid-latitude Northern Hemisphere from 1950—2022. Using station-based observations, we confirm that ARs have driven coherent long-term trends in both total and extreme precipitation over land. The warming-induced rise in atmospheric moisture alone accounts for an AR frequency increase of ~0.6–0.8% per decade. AR trends exhibit meridional dipolar patterns over western North America and Europe, governed by positive trends of the Pacific-North America Pattern and North Atlantic Oscillation. The “Pineapple Express” ARs have been suppressed, declining of AR landfalling over the Pacific Northwest. Through atmospheric model analyses, we demonstrate that observed sea surface temperature changes dominate Atlantic AR trends, while exerting minor effects on Pacific AR trends.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"189 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01191-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Previous modeling studies have indicated that Atmospheric rivers (ARs) will become more frequent in the warming climate. However, whether we have experienced more ARs during historical period is less studied. Here, we show that winter AR frequency has significantly increased over the mid-latitude Northern Hemisphere from 1950—2022. Using station-based observations, we confirm that ARs have driven coherent long-term trends in both total and extreme precipitation over land. The warming-induced rise in atmospheric moisture alone accounts for an AR frequency increase of ~0.6–0.8% per decade. AR trends exhibit meridional dipolar patterns over western North America and Europe, governed by positive trends of the Pacific-North America Pattern and North Atlantic Oscillation. The “Pineapple Express” ARs have been suppressed, declining of AR landfalling over the Pacific Northwest. Through atmospheric model analyses, we demonstrate that observed sea surface temperature changes dominate Atlantic AR trends, while exerting minor effects on Pacific AR trends.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.