Effect of Loading Rate on Monocrystalline Germanium Nanoindentation Behavior Based on Molecular Dynamics

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
JOM Pub Date : 2025-06-16 DOI:10.1007/s11837-025-07509-6
Junye Li, Xinjun Xie, Juncheng Song, Danni Li, Jianhe Liu, Weihong Zhao
{"title":"Effect of Loading Rate on Monocrystalline Germanium Nanoindentation Behavior Based on Molecular Dynamics","authors":"Junye Li,&nbsp;Xinjun Xie,&nbsp;Juncheng Song,&nbsp;Danni Li,&nbsp;Jianhe Liu,&nbsp;Weihong Zhao","doi":"10.1007/s11837-025-07509-6","DOIUrl":null,"url":null,"abstract":"<div><p>Monocrystalline germanium (Ge) is a crucial precision optics and semiconductor material, whose mechanical properties determine the performance and life of parts. In this paper, we simulated nanoindentation of monocrystalline Ge with different loading rates through molecular dynamics and analyzed the force, deformation, temperature, and energy of simulation results. We showed that overall force shows a downward trend at high loading rate; the thickness of the deformation layer is not affected by loading rate, but a high loading rate will expand the deformation layer in horizontal direction; high temperature increases the distance between atoms and changes lattice structure, but atoms will stack into a form with higher space utilization; kinetic energy changes are concentrated in the deformed layer. These results provide some theoretical support for study of mechanical properties of monocrystalline Ge.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"77 9","pages":"6550 - 6558"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-025-07509-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Monocrystalline germanium (Ge) is a crucial precision optics and semiconductor material, whose mechanical properties determine the performance and life of parts. In this paper, we simulated nanoindentation of monocrystalline Ge with different loading rates through molecular dynamics and analyzed the force, deformation, temperature, and energy of simulation results. We showed that overall force shows a downward trend at high loading rate; the thickness of the deformation layer is not affected by loading rate, but a high loading rate will expand the deformation layer in horizontal direction; high temperature increases the distance between atoms and changes lattice structure, but atoms will stack into a form with higher space utilization; kinetic energy changes are concentrated in the deformed layer. These results provide some theoretical support for study of mechanical properties of monocrystalline Ge.

基于分子动力学加载速率对单晶锗纳米压痕行为的影响
单晶锗(Ge)是一种重要的精密光学和半导体材料,其机械性能决定了零件的性能和寿命。本文采用分子动力学方法模拟了不同加载速率下单晶锗的纳米压痕,并对模拟结果的受力、变形、温度和能量进行了分析。结果表明,在高加载速率下,整体受力呈下降趋势;变形层的厚度不受加载速率的影响,但高加载速率会使变形层在水平方向上膨胀;高温增加了原子之间的距离,改变了晶格结构,但原子会堆叠成空间利用率更高的形式;动能变化集中在变形层。这些结果为研究单晶锗的力学性能提供了一定的理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JOM
JOM 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.80%
发文量
540
审稿时长
2.8 months
期刊介绍: JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信