Nontrivial Global Solutions to Some Quasilinear Wave Equations in Three Space Dimensions

IF 2.6 1区 数学 Q1 MATHEMATICS
Dongxiao Yu
{"title":"Nontrivial Global Solutions to Some Quasilinear Wave Equations in Three Space Dimensions","authors":"Dongxiao Yu","doi":"10.1007/s40818-025-00205-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we seek to construct nontrivial global solutions to some quasilinear wave equations in three space dimensions. We first present a conditional result on the construction of nontrivial global solutions to a general system of quasilinear wave equations. Assuming that a global solution to the geometric reduced system exists and satisfies several well-chosen pointwise estimates, we find a matching exact global solution to the original wave equations. Such a conditional result is then applied to two types of equations which are of great interest. One is John’s counterexamples <span>\\(\\Box u=u_t^2\\)</span> or <span>\\(\\Box u=u_t u_{tt}\\)</span>, and the other is the 3D compressible Euler equations with no vorticity. We explicitly construct global solutions to the corresponding geometric reduced systems and show that these global solutions satisfy the required pointwise bounds. As a result, there exists a large family of nontrivial global solutions to these two types of equations.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"11 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-025-00205-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-025-00205-3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we seek to construct nontrivial global solutions to some quasilinear wave equations in three space dimensions. We first present a conditional result on the construction of nontrivial global solutions to a general system of quasilinear wave equations. Assuming that a global solution to the geometric reduced system exists and satisfies several well-chosen pointwise estimates, we find a matching exact global solution to the original wave equations. Such a conditional result is then applied to two types of equations which are of great interest. One is John’s counterexamples \(\Box u=u_t^2\) or \(\Box u=u_t u_{tt}\), and the other is the 3D compressible Euler equations with no vorticity. We explicitly construct global solutions to the corresponding geometric reduced systems and show that these global solutions satisfy the required pointwise bounds. As a result, there exists a large family of nontrivial global solutions to these two types of equations.

三维拟线性波动方程的非平凡整体解
本文试图构造三维拟线性波动方程的非平凡整体解。首先给出了一类拟线性波动方程非平凡整体解构造的一个条件结果。假设几何约简系统的一个全局解存在,并且满足几个精心选择的点估计,我们找到了原始波动方程的一个匹配的精确全局解。然后将这样的条件结果应用于两种非常有趣的方程。一个是John的反例\(\Box u=u_t^2\)或\(\Box u=u_t u_{tt}\),另一个是无涡度的三维可压缩欧拉方程。我们显式构造了相应几何约简系统的全局解,并证明了这些全局解满足所要求的点向界。因此,这两类方程存在一大群非平凡全局解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信