Md Nur Hasan, Shibashis Halder, Amit Das, Mohammad Raish, Basudeb Dutta, Atanu Jana, Jagannath Pal, Mridula Guin, Saugata Konar
{"title":"Synthesis and Computational Elucidation of a New Dipicolinato-Vanadium(V) Complex: Crystal Structure, Hirsfeld Surface, FMO, MEP, and NCI Studies","authors":"Md Nur Hasan, Shibashis Halder, Amit Das, Mohammad Raish, Basudeb Dutta, Atanu Jana, Jagannath Pal, Mridula Guin, Saugata Konar","doi":"10.1134/S0036023625601424","DOIUrl":null,"url":null,"abstract":"<p>A new vanadium (V) complex [VO(dipic)(hpo)(H<sub>2</sub>O)] (<b>1</b>) (where “dipic” is dipicolinate and hpo is 1-(2-hydroxyphenyl)ethanone oxime) is synthesized with a oxime moiety and dipicolinato anion as ligands. Using single crystal X-ray diffraction technique, the structure of the complex <b>1</b> is determined. The theoretically optimized structure of the complex is obtained from DFT calculations predicting a distorted pentagonal-bipyramidal geometry. Theoretically predicted structure is in excellent match with the experimentally obtained structure utilizing X-ray single crystal diffraction analysis. Frontier molecular orbital (FMO) analysis, molecular electrostatic potential (MEP) are performed to understand the stability and reactivity characteristics of the complex. The simulated UV-Vis maximum absorption wavelength from TDDFT method is in excellent agreement with the experimentally observed λ<sub>max</sub>. Hirshfeld surface analysis indicates hydrogen bonding involving O–H<span>\\( \\cdots \\)</span>O interactions play major role in stabilizing the molecular crystal. Interesting non-covalent interactions are revealed by a thorough examination of the complex’s solid state architecture. In the solid state, strong self-assembled complex formation is dependent on hydrogen bonding interactions, V⋯O, and V⋯N interactions.</p>","PeriodicalId":762,"journal":{"name":"Russian Journal of Inorganic Chemistry","volume":"70 7","pages":"1034 - 1046"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0036023625601424","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
A new vanadium (V) complex [VO(dipic)(hpo)(H2O)] (1) (where “dipic” is dipicolinate and hpo is 1-(2-hydroxyphenyl)ethanone oxime) is synthesized with a oxime moiety and dipicolinato anion as ligands. Using single crystal X-ray diffraction technique, the structure of the complex 1 is determined. The theoretically optimized structure of the complex is obtained from DFT calculations predicting a distorted pentagonal-bipyramidal geometry. Theoretically predicted structure is in excellent match with the experimentally obtained structure utilizing X-ray single crystal diffraction analysis. Frontier molecular orbital (FMO) analysis, molecular electrostatic potential (MEP) are performed to understand the stability and reactivity characteristics of the complex. The simulated UV-Vis maximum absorption wavelength from TDDFT method is in excellent agreement with the experimentally observed λmax. Hirshfeld surface analysis indicates hydrogen bonding involving O–H\( \cdots \)O interactions play major role in stabilizing the molecular crystal. Interesting non-covalent interactions are revealed by a thorough examination of the complex’s solid state architecture. In the solid state, strong self-assembled complex formation is dependent on hydrogen bonding interactions, V⋯O, and V⋯N interactions.
期刊介绍:
Russian Journal of Inorganic Chemistry is a monthly periodical that covers the following topics of research: the synthesis and properties of inorganic compounds, coordination compounds, physicochemical analysis of inorganic systems, theoretical inorganic chemistry, physical methods of investigation, chemistry of solutions, inorganic materials, and nanomaterials.